Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Experimental Method for Extracting Dominant Suspension Mode Shapes Coupled with Automotive Interior Acoustic Mode Shapes

2014-06-30
2014-01-2045
A finite element (FE) model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, is utilized for the improvement of the performance in the vehicle development phase. However, the accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. Therefore, conducting the experiments with the prototype vehicle or the existed production vehicle is still very important for the performance evaluation and the model validation. The vehicle noise transfer function of the road noise performance cannot be evaluated with the existed excitation equipment, such as the 3 or 6 directional electromagnetic shaker. Therefore, this paper proposes new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location.
Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
X