Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Journal Article

Analysis of Vehicle Front Impact Pulse Severity in US NCAP

2020-04-14
2020-01-0986
There have been multiple studies on the effect of vehicle impact pulses on occupant responses, and studies on the previous and current US NCAP (New Car Assessment Program) vehicle pulses. This paper analyzes 35 mph (56.3 kph) front impact vehicle pulses and occupant responses in US NCAP tests conducted by the NHTSA from 2011 to 2019. Based on the occupant response analysis, a simple generic occupant restraint force-relative displacement model has been created. This generic model captures the fundamental restraint characteristics of the vehicles in the recent years, and together with the vehicle pulse, they provide several occupant response predictors. Furthermore, this paper proposes a new pulse severity metric PSD (Pulse Severity by Displacement) based on the vehicle impact data statistics, and uses the pulse severity to compare with other pulse severity definitions.
Journal Article

Hybrid III Head/Neck Analysis Highlighting Nij in NCAP

2012-04-16
2012-01-0102
Nij, a function of upper neck forces and moment, plays a dominant role in the vehicle's star rating under the new NHTSA NCAP front impact program. This is mainly due to an artifact in the mapping of the Nij into the “risk” value used in the star rating, and the fact that the neck region is not weighted appropriately to reflect its real world significance relative to the other body regions in the NCAP rating. New test data also show that compared with the 50th male driver Nij, the 5th female passenger Nij is significantly more challenging to contain and therefore it is more dominant in the star rating. This paper describes the Hybrid III dummy head and neck impact response and provides a method to determine the external force acting on the head. The force and its acting point on the head are determined from head acceleration, angular acceleration, and the upper neck forces.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Door Interior Trim Safety Enhancement Strategies for the SID-IIs Dummy

2005-04-11
2005-01-0284
The Insurance Institute for Highway Safety (IIHS) has begun a new side impact crashworthiness evaluation of vehicles, using tests that represent impacts from large trucks and sport utility vehicles. This test protocol, intended as consumer information rating of vehicles, adds new challenges to current side impact crashworthiness development in both the vehicle structure and dummy responses. Available tests data seem to indicate that safety enhancement features that work for current US-SID and Euro-SID may not work for the SID-IIs dummy that is used in the IIHS test protocol, but may in fact deteriorate dummy response. This may partly be explained by the fact that the SID-IIs is not a scaled down dummy of either the US-SID or the Euro-SID. This paper presents and discusses the results from sled tests conducted to investigate countermeasures that will help improve the response of the SID-IIs in the Insurance Institute's side impact test.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

2003-03-03
2003-01-0505
This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

Air-Bag Inflator Gas-Jet Evaluation

1993-03-01
930237
This paper directs attention to a specific region of the air-bag deployment process. Both experimental and analytical results are presented. Experimental procedures and their results are presented along with a two dimensional unsteady isentropic CFD model and a empirical gas-jet model.
X