Refine Your Search

Topic

Search Results

Author:
Technical Paper

A Comparative Study of Multi-zone Combustion Models for HCCI Engines

2008-04-14
2008-01-0064
The multi-zone model has been attracting growing attention as an efficient and accurate numerical model for homogeneous charge compression ignition (HCCI) combustion simulations. In this paper, a comparative study was carried out to clarify the effect of various sub-models on the prediction capability of the multi-zone model. The influences of the distribution of zones, heat transfer from the wall, mass and heat exchange between zones and boundary layer thickness on HCCI combustion and emissions were discussed based on the experimental data. The results indicate dividing the colder region into more zones can improve the emissions prediction, however, more zones in the hotter region has little effect on the predictions. The improved Woschni model significantly improves the prediction of heat transfer.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

An Investigation of Multiple-Injection Strategy in a Diesel PCCI Combustion Engine

2010-04-12
2010-01-1134
Multiple-injection strategy for Premixed Charge Compression Ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code [ 1 ] coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, included spray angles, injecting velocity, and the combined effects of injection parameters and EGR rate and boost pressure were examined. The mixing process and formations of soot emission and NO x were investigated as the main concern of the research. The results show that the fuel splitting proportion and the injection timing significantly impacted the combustion and emissions due to the considerable changes of the mixing process and fuel distribution in cylinder. The soot emission and unburned HC (UHC) were affected by included spray angles since the massive influences of the fuel distribution resulted from the change in spray targeting point on piston bowl.
Journal Article

Analysis of Diesel Engine In-Cylinder Air-Fuel Mixing with Homogeneity Factor: Combined Effects of Pilot Injection Strategies and Air Motion

2014-10-01
2014-01-9052
With a view to understanding the air-fuel mixing behavior and the effects of the mixture quality on the emissions formation and engine performance, a new quantitative factor of the in-cylinder air-fuel homogeneity named Homogeneity Factor (HF) has been developed. Its characteristics under various injection conditions and air swirl motions within the cylinder have been investigated with CFD simulation. The results have shown that air-fuel homogeneity is essentially affected by the spatial and temporal fuel distribution within the combustion chamber. Higher injection pressure, longer dwell time and increased pilot fuel quantities can contribute to better mixing quality resulting in increased HF and optimum engine performance with low fuel consumption and soot emissions. With regard to the in-cylinder air motion, increasing swirl ratio enhances the air-fuel mixing quality which has been reflected in the variation of the HF.
Technical Paper

Analysis of the Effect of Re-Entrant Combustion Chamber Geometry on Combustion Process and Emission Formation in a HSDI Diesel Engine

2012-04-16
2012-01-0144
An investigation has been carried out to examine the influence of re-entrant combustion chamber geometry on mixture preparation, combustion process and engine performance in a high-speed direct injection (HSDI) four valves 2.0L Ford diesel engine by CFD modeling. The computed cylinder pressure, heat release rate and soot and NOx emissions were firstly compared with experimental data and good agreement between the predicted and experimental values was ensured the accuracy of the numerical predictions collected with the present work. Three ITs (Injection Timing) at 2.65° BTDC, 0.65° BTDC and 1.35° ATDC, all with 30 crank angle pilot separations were also considered to identify the optimum IT for achieving the minimum amount of pollutant emissions.
Technical Paper

Analysis of the Influence of Inlet Temperature on Oxy-Fuel Combustion in an HSDI Diesel Engine

2022-06-14
2022-37-0003
Carbon Capture and Storage (CCS) techniques in combination with oxy-fuel combustion have been applied as an effective way to achieve nitrogen-free combustion and zero-carbon emissions. The present study has been carried out computationally in the framework of a European project (RIVER) (funded by Interreg North-West Europe) to explore the effect of intake charge temperature on oxy-fuel combustion in an HSDI diesel engine under HCCI combustion mode. Experimental data obtained from a Ford Puma common-rail diesel engine for a conventional part-load condition at 1500 rev/min and 6.8 bar IMEP have been used to validate the CFD model. To simulate the combustion process of HCCI, a reduced chemical n-heptane-n-butanol-PAH model has been adopted. The model has 349 elementary reactions and 76 species. The simulation has been carried out at five different intake charge temperatures (140°C, 160°C, 180°C, 200°C, and 220°C) and five different intake oxygen percentages (15%, 17%, 19%, and 21% v/v).
Journal Article

CFD Analysis of VVT/VVA on the Gas Exchange and Fuel-Air Mixing in a Diesel Engine

2008-06-23
2008-01-1635
A three-dimensional simulation was carried out for investigating effects of negative valve overlap (NVO) on gas exchange and fuel-air mixing processes in a diesel homogeneous charge compression ignition (HCCI) engine with early fuel injection. It was found that the case with longer NVO produced a stronger swirl motion and a more significant vortex below the intake valve due to the high annular jet flow through the valve curtain area during the intake stroke. However, there was not much difference in the values of swirl ratio, tumble ratio and turbulence intensity between different NVOs at the end of compression stroke. It was also seen that enlarged NVO not just increased in-cylinder temperature but also improved the temperature homogeneity. With increased NVO, there is a bigger spray shape and more droplets exist in gaps of sprays. This demonstrates that stronger turbulence intensity and higher temperature homogeneity with higher NVO improve fuel vaporization and air-fuel mixing.
Technical Paper

CFD Evaluation of Effects of Split Injection on Combustion and Emissions in a DI Diesel Engine

2011-04-12
2011-01-0822
Effects of split injection with different EGR rate on combustion process and pollutant emissions in a DI diesel engine have been evaluated with CFD modeling. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and 3D CFD simulation was carried out from intake valve closing (IVC) to exhaust valve opening (EVO). Totally 12 different injection strategies for which two injection pulses with different fuel amount for each pulse (up to 30% for the second pulse) and different separation between two pulses (up to 30° CA) were evaluated. Results show that adequate injection separation and enough fuel amount of the second pulse could form a separate 2nd stage of heat release which could reduce the peak combustion temperature and improve the oxidation of soot formed in the first heat release stage.
Technical Paper

Characteristics of Rail Pressure Fluctuations under Two-Injection Conditions and the Control Strategy Based on ANN

2017-10-08
2017-01-2212
High-pressure common rail (HPCR) fuel injection system is the most widely used fuel system in diesel engines. However, when multiple injection strategy is used, the pressure wave fluctuation is un-avoided due to the opening and closing of the needle valve which will affect the subsequent fuel injection and combustion characteristics. In this paper, several parameters: injection pressure, injection intervals, the main injection pulse widths are investigated on a common rail fuel injection test rig with two injection pulses to explore their effect on the fuel injection rate and fuel quantity. The result showed that the longer injection interval between the pilot and main injections will lead to a rail pressure drop at the beginning of the main injection so that a smaller fuel quantity will be delivered. The main injection pulse width also influences fuel injection rate and the main fuel quantity.
Technical Paper

Diesel Engine Combustion Optimization for Bio-Diesel Blends Using Taguchi and ANOVA Statistical Methods

2013-09-08
2013-24-0011
Diesel engine emissions are directly influenced by the air fuel mixture within the cylinder chamber. Increasing concern over the environment impacts of the exhaust pollutants has enforced the setting of emissions legislation since the 1960s. In the last decades emissions legislations have become stricter which resulted to the introduction of multiple injection strategies and exhaust gas recirculation (EGR) in the cylinder in order to abate emissions produced. In this study, the effect of injection rate for double in-cylinder injection in combination with various EGR and bio-diesel fuel rates has been studied using CFD simulations. Taguchi orthogonal arrays have been used for reducing the number of simulations for possible combinations of different rates of injection quantities, EGR composition and bio-diesel quantities. Oneway analysis of variance technique (ANOVA) has been used to estimate the importance of the above factors to the emissions output and performance of the engine.
Technical Paper

Direct Numerical Simulation of Methane Turbulent Premixed Oxy-Fuel Combustion

2017-10-08
2017-01-2192
A 3-D DNS (Three-Dimensional Direct Numerical Simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristics of turbulent premixed oxy-fuel combustion in the condition relevant to Spark Ignition (SI) engines. First, 1-D (one-dimensional) laminar freely propagating premixed flame is examined to show a consistent combustion temperature for different dilution cases, such that 73% H2O and 66% CO2 dilution ratios are adopted in the following 3-D DNS cases. Four 3-D DNS cases with various turbulence intensities are conducted. It is found that dilution agents can reduce the overall flame temperature but with an enhancement of density weighted flame speed. CO2 dilution case shows the lowest flame speed both in turbulent and laminar cases.
Technical Paper

Effects of Air/Fuel Ratios and EGR Rates on HCCI Combustion of n-heptane, a Diesel Type Fuel

2003-03-03
2003-01-0747
The effects of Air/Fuel (A/F) ratios and Exhaust Gas Re-Circulation (EGR) rates on Homogeneous Charge Compression Ignition (HCCI) combustion of n-heptane have been experimentally investigated. The experiments were carried out in a single-cylinder, 4-stroke and variable compression-ratio engine equipped with a port fuel injector. Investigations concentrate on the HCCI combustion of n-heptane at different A/F ratios, EGR rates and their effects on knock limit, engine load, combustion variability, and engine-out emissions such as NOx, CO, and unburned HC. Variations of auto-ignition timings and combustion durations in the two-stage combustion process are analyzed in detail. Results show that HCCI combustion with a diesel type fuel can be implemented at room temperature with a conventional diesel engine compression-ratio. However, its knock limit occurs at very high A/F ratios, although high EGR rates can be tolerated.
Technical Paper

Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell

2018-09-10
2018-01-1718
Proton exchange membrane (PEM) fuel cell is widely recognized as an outstanding portable power plant and expected to be possibly commercialization in the near future. As is well known, mechanical stresses implemented on the bipolar plates during the assembly procedure should have prominent influences on mass and heat transfer behavior inside the cell, as well as the resultant performance. In this study, an analytical model is proposed to comprehensively investigate the influence of clamping force on the mass transport, electrochemical properties and overall cell output capability of a PEM fuel cell. The results indicate that proper clamping force not only benefits the gas leakage prevention but also increases the contact area between the neighboring components to decrease the contact ohmic resistance.
Technical Paper

Evaluation of Breakup Models and Application to the Mixture Preparation Process for Diesel HCCI Engines

2008-04-14
2008-01-0023
To model the spray atomization for diesel HCCI engines, three breakup models including the Taylor Analogy Breakup (TAB), Cascade Atomization and Drop Breakup (CAB) and Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) were evaluated. Based on the experimental results from constant volume, the prediction accuracy of three breakup models was assessed in terms of spray penetration, droplet diameter, droplet velocity and vapor distribution. The results indicate that the mean droplet diameters are significantly underestimated by the TAB model, and the CAB model shows the best performance in the droplet diameter and velocity distributions, but predicts delayed vapor distribution. The KH-RT model shows good predictions in all aspects. By using the KH-RT model, the influence of different injection strategies, including injection timing, spray angle, spray pressure, nozzle hole diameter and split injection, on the mixture preparation process for diesel HCCI engines were investigated.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
Technical Paper

Implementation and Improvement of ISAT in HCCI Multidimensional Modeling with Detailed Chemical Kinetics

2008-04-14
2008-01-0978
In situ adaptive tabulation (ISAT) has been implemented into HCCI multidimensional modeling with detailed chemical kinetics, and the performance of ISAT was discussed. The results indicate that ISAT can reduce the computational time remarkably, and the global error can be efficiently controlled. The ISAT without growth and a reversal traverse were tested to ISAT, but they didn't influence the performance of ISAT greatly. Taking account of the character issues of chemical reactions during HCCI combustion process, an enhanced approach, the partial ISAT (PaISAT), was presented, which can significantly improve the accuracy and speed-up factor. The memory occupancy needed by ISAT was reduced based on the dynamic trimming technique.
Technical Paper

Influence of Oxy-Fuel Combustion on Engine Operating Conditions and Combustion Characteristics in a High Speed Direct Injection (HSDI) Diesel Engine under Homogenous Charge Compression Ignition (HCCI) Mode

2020-04-14
2020-01-1138
Oxyfuel combustion and nitrogen-free combustion coupled with Carbon Capture and Storage (CCS) techniques have been recently proposed as an efficient method to achieve carbon free emissions and to improve the combustion efficiency in diesel engines. In this study, a 3-D computational fluid dynamics model has been used to evaluate the influence of oxyfuel-HCCI combustion on engine operating conditions and combustion characteristics in a HSDI diesel engine. Investigations have conducted using four different diluent strategies based on the volume fraction of pure oxygen and a diluent gas (carbon dioxide). The first series of investigations has performed at a constant fuel injection rating at which 4.4 mg of fuel has injected per cycle. In the second part of analysis, the engine speed was maintained at 1500 rev/min while the engine loads were varied by changing the fuel injection rates in the range of 2.8 to 5.2 mg/cycle.
Technical Paper

Investigation of Pilot and Multiple Injection Parameters on Mixture Formation and Combustion Characteristics in a Heavy Duty DI-Diesel Engine

2012-04-16
2012-01-0142
The mechanism of NOx and soot reduction using different pilot and multiple injection strategies has been computationally studied in a heavy duty DI Diesel engine. A designed set of advanced injection schemes with various variables and exhaust gas recirculation rate (up to 10%) have been analyzed. The CFD model was firstly calibrated against experimental data for a part load operation at 1600 rpm. The computational models used were found to predict the correct trends obtained in the experiment. The study demonstrated the potential and explained the mechanism of the combination of EGR and multiple injection to reduce both soot and NOx emissions together with improved fuel economy.
Technical Paper

Investigation of the HCCI/CAI Combustion Process by 2-D PLIF Imaging of Formaldehyde

2004-06-08
2004-01-1901
The paper reports an investigation into the HCCI/CAI combustion process in a single cylinder optical engine. The auto-ignition and combustion processes of primary reference fuels were studied using the two-dimensional PLIF technique as well as heat release analyses. The formaldehyde formed during the low-temperature reactions of HCCI/CAI combustion was visualized by a PLIF system. The formaldehyde was excited by a Nd:YAG laser pumped tunable dye laser at 355nm wavelength and detected by a gated ICCD camera. Both temporal and spatial distributions of formaldehyde were measured during the auto-ignition processes of different primary reference fuels. The results have shown that the formation of formaldehyde and its subsequent disappearance were closely related to the start of the low temperature and high temperature heat release processes, respectively. The formation of formaldehyde was more affected by the charge temperature than by the fuel concentration.
Technical Paper

Prediction of the Operating Range for a HCCI Engine Based on a Multi-zone Model

2008-06-23
2008-01-1663
A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ringing intensity), partial burn (presented by combustion efficiency) and cycle-to-cycle variations (presented by the sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with iso-octane was simulated, and it was found that the knock and cycle-to-cycle variations predicted by this model showed a satisfactory agreement with measurements under different initial temperatures and equivalence ratios, and the operating range was well reproduced by the model. Furthermore, the model was applied to develop the operating range for different engine speeds by changing initial temperature and equivalence ratio. Finally, the potential to expand the operating range of HCCI engines through two strategies, i.e. variable compression ratio and boost, were investigated.
X