Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

An Engineering Approach to Predict Fracture and Tearing

2011-04-12
2011-01-0002
An engineering approach was developed to extract the failure plastic strain, thinning failure strain, and major in plane failure strain for finite element simulation applications. This approach takes into account the failure strain dependency on the element size when element deletion scheme is invoked in the simulation of material fracture. Both localized necking fracture and tensile shear fracture can be predicted when appropriate elements and material models are used in LS-DYNA simulations. This leads to a more accurate prediction of fracture and tearing in the finite element simulation of vehicle structure and crash loading conditions.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Dynamic Spot Weld Testing

2009-04-20
2009-01-0032
Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Bake-Hardening Effect of Dual Phase Steels

2009-04-20
2009-01-0796
Tensile tests were performed on DP600 and DP780 dual-phase steels to determine the relative effects of bake-hardening on the static and dynamic material response. The quasi-static test variables were prestrain level, specimen orientation (longitudinal, transverse), and heat treatment (as-received, bake hardened). Dynamic tests were performed at rates ranging from 0.001/s to 500/s, with variables of prestrain level and heat treatment. Increases in the ultimate and yield strength for both DP600 and DP780 were mainly due to prestrain and strain rate effects. The bake-hardening effects varied with the material, amount of prestrain, and strain rate. Crush tests were also performed on DP780 tubes in the as-received and bake-hardened conditions at rates ranging from quasi-static up to 7250 mm/s. The energy absorption was similar regardless of the rate.
Technical Paper

Inertia Effect in Dynamic Impact Tests

2004-03-08
2004-01-0814
Inertia force during dynamic testing exists in any testing system. A generic system is analyzed using the principle of rigid body dynamics. It is shown that the load recorded by a load cell includes both the load experienced by the test specimen and the inertia force from the mass between the specimen and the load cell, when the load cell is placed on the fixed side of the test specimen. An impact fixture designed for spot weld strength test was then studied as an example. Test data were collected and analyzed to show the effect of inertia on the impact strength of the spot weld.
X