Refine Your Search

Topic

Search Results

Author:
Technical Paper

Multiphase Flow Simulation of the Oil Splashing during the Actuated Stage of an Innovative Axle Dry Braking System

2021-09-21
2021-01-1238
This paper proposes the CFD simulation of the oil splashing within the discs’ chamber of a novel concept for axle dry braking system in off-highway vehicles. The system completely removes the lubricating oil from the discs’ chamber during the not-engaged configuration of the friction plates and it quickly restore it at the beginning of the braking stage when the discs’ cooling becomes crucial, thus ensuring a significant reduction of the power losses. The CFD analysis of the real component is performed to predict the efficiency of the system in terms of both the time needed to replenish the discs’ chamber when brake is actuated, and the hydraulic torque exerted by the splashing of the oil. The entire three-dimensional geometry of the domain is accurately discretized, and the multi-phase flow nature is addressed by means of the volume of fluid approach.
Technical Paper

Numerical Modeling of the Critical Operating Conditions for a Hydraulic Lubrication System in a Heavy-Duty Tractor Driveline

2021-09-21
2021-01-1140
This paper analyzes the lubrication system of a heavy-duty tractor driveline in different working conditions by means of a lumped parameter approach. The study highlights the critical areas of the hydraulic circuit that are not sufficiently lubricated and a new system setup is proposed to guarantee an adequate flow rates distribution. The numerical model of the lubrication system combines lumped elements with more complex user-defined components in order to address both the pressure losses due to the geometrical features of the circuit and the specific flow characteristics of the hydraulic components. The model considers several configurations of the system accounting for the rotation rate of the engine and the clutches engagement. The results are validated through experimental comparisons. Several critical issues are identified in terms of insufficient lubricant supplied to the utilities.
Technical Paper

Optimization of the Lubrication Distribution in Multi Plate Wet-Clutches for HVT Transmissions: An Experimental - Numerical Approach

2018-09-10
2018-01-1822
The paper investigates the lubrication flow within multi plate wet-clutches for hydro-mechanical variable transmissions in order to optimize the oil distribution and to reduce the thermo-mechanical stresses on the plates. Since experimental measurements are very difficult to carry out on a real system, CFD numerical tools are used for predicting the flow distribution in a real geometry under actual operating conditions. A modular approach is adopted for the domain subdivision in order to represent accurately the three dimensional geometrical features, while the volume of fluid approach is used to model the multi-phase flow that characterizes the component. Poor lubrication is predicted where high thermal stresses were observed during tests. Furthermore, the numerical modeling is validated against measurements carried out on an ad-hoc designed test rig, which adopts transparent PMMA and 3D-printed inserts for the flow investigation.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Journal Article

An Innovative Approach to Kinematic Analysis of Multibody Hydraulic Actuation Systems

2016-09-27
2016-01-8120
The paper focuses on the development of an innovative methodology for the direct measurement of the main kinematic variables in multibody hydraulic actuation systems. The analysis investigates how the motion capture technique has been applied to the experimental determination of position, velocity and acceleration of hydraulically controlled actuation systems for off-highway machines. A number of earth-moving machines has been taken into account, in particular a mini-excavator articulated arm has been equipped with both a standard mechanical system for position and acceleration measurement (including different accelerometers, linear and angular transducers), and a set of IR markers for motion capture application. First, the hydraulically controlled boom-arm-bucket system has been operated using a control routine reproducing a reference operating condition, in order to define the accuracy of the motion capture system in detecting the kinematic quantities’ variations.
Journal Article

Dynamic Analysis of the Lubrication in a Wet Clutch of a Hydromechanical Variable Transmission

2016-09-27
2016-01-8099
The paper investigates the oil flow through a multi plate clutch for a hydro-mechanical variable transmission under actual operating conditions. The analysis focuses on the numerical approach for the accurate prediction of the transient behavior of the lubrication in the gear region: the trade-off between prediction capabilities of the numerical model and computational effort is addressed. The numerical simulation includes the full 3D geometry of the clutch and the VOF multi-phase approach is used to calculate the oil distribution in the clutch region under different relative rotating velocities. Furthermore, the lubrication of the friction disks is calculated for different clutch actuation conditions, i.e. not-engaged and engaged positions. The influence of different geometrical features of the clutch lubricating circuit on the oil distribution is also determined.
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Technical Paper

Fast Image Processing Applied to Fluid Power Components

2009-10-06
2009-01-2849
This paper focuses on the application of the fast image processing to the internal flow field characterization, and on the set up of the experimental methodology which enables the use of direct visualization techniques to fluid power components. More in details, the design of both a low pressure hydraulic power unit and a number of polymethyl-methacrylate (PMMA) transparent prototypes are firstly outlined. Afterward, the fast image processing is involved and, to highlight the usefulness of the fast image processing in the analysis of multi-phase multi-component effluxes, solid particle injection and air bubble inoculation are used. Finally, some of the results obtained using a progressive, mid resolution, high frame rate and monochrome digital camera are shown, and the internal flow evolution is qualitatively analyzed.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

Design and Optimization of a Variable Displacement Vane Pump for High Performance IC Engine Lubrication: Part 1 - Experimental Analysis of the Circumferential Pressure Distribution with Dynamic Pressure Sensors

2009-04-20
2009-01-1045
In the present automotive research, increasing efforts are being directed to improve the overall organic efficiency, which, inter alia, means to improve the operational behavior of the auxiliary organs. This paper reports an experimental approach for the determination and analysis of the pressure distribution in a variable displacement vane pump for high speed internal combustion engine lubrication. More in details, an actual application is presented for a seven-blades variable displacement vane pump equipped with a hydraulic geometry variation system. This unit is characterized by a high performance, in terms of rotational speed, delivery pressure and displacement variation. The experimental layout and some relevant facilities are described. An extended test campaign was performed on the pump to characterize its operational behavior.
Technical Paper

Design and Optimization of a Variable Displacement Vane Pump for High Performance IC Engine Lubrication: Part 2 – Lumped Parameters Numerical Analysis

2009-04-20
2009-01-1064
In this paper a detailed analysis focused on lumped parameters numerical modeling of a variable displacement vane pump for high speed internal combustion engine lubrication is presented and discussed. This particular volumetric unit is characterized by very extreme performance, both in terms of rotational speed, delivery pressure and displacement variation. First of all, a comprehensive description of the simulation environment properly tailored for the numerical modeling of the vane pump operation is introduced and all its geometric, kinematic and fluid-dynamic characteristics are described in depth. Then, the results coming from an exhaustive experimental campaign have been compared with simulations, finding a general good accordance that demonstrates the reliability of this numerical approach.
Technical Paper

Influence of Gasoline - Ethanol Blends on Engine Torque Variation

2009-04-20
2009-01-0234
In this paper the possibility to use the instantaneous engine torque measurement to estimate the injected fuel mixture is explored. The analysis focuses on a four stroke SI engine equipped with a low pressure common rail type multi-fuel injection system. First, the injection system is simulated by means of a comprehensive lumped and distributed parameters numerical model, in order to evaluate the dynamic behavior of the fuel rail in terms of injection pressure profiles, instantaneous mass flow rate delivered to each cylinder and engine heat of combustion power. The accuracy of the model is addressed by comparing the predicted results with the measured data. Afterward, the 1D model of the whole engine is constructed and validated against experimental measurements. By using one dimensional engine simulation the previously calculated injection profiles are used to determine the instantaneous torque for different engine speeds and ethanol/gasoline blends.
Journal Article

Cavitating Flows in Hydraulic Multidimensional CFD Analysis

2008-10-07
2008-01-2678
The effect of cavitation plays a fundamental role in the hydraulic components design and the capability of predicting its causes and characteristics is fundamental for the optimization of fluid systems. In this paper, a multidimensional CFD approach is used to analyze the cavitating phenomena typical of hydraulic components using water as operating fluid. An open source fluid-dynamics code is used and the original cavitation model (based on a barotropic equation of state and homogeneous equilibrium assumption) is extended in order to account also for gases dissolved in the liquid medium. The effect of air dissolution into liquid water is modeled by introducing the Henry law for the equilibrium condition, and the time dependence of solubility is calculated on a Bunsen Coefficient basis. Furthermore, a simplified approach to turbulence modeling for compressible flows is coupled to the cavitation model and implemented into the CFD code.
Technical Paper

A Theoretical Analysis about Multiple Actuation Systems Efficiency

2008-10-07
2008-01-2677
This paper studies the dependency of the total efficiency of a multiple actuation hydraulic system on the operating conditions as well as on the control strategies applicable to control valves. In particular, with respect to the parallel connection among hydraulic actuators managed by proportional control valves, a general structure of the functional relationship correlating the hydraulic power provided by the supply unit and the mechanical power exerted by actuators is proposed and used to determine the operating point and the system overall efficiency. Afterwards, the dependency of the system behavior on external load variations and on valves control is assessed, and the influence of a modification of the operating conditions on the overall efficiency is highlighted. Finally, the validity limits of some compensating corrections are determined.
Technical Paper

Lumped Parameters Numerical Simulation of a Variable Displacement Vane Pump for High Speed ICE Lubrication

2008-10-06
2008-01-2445
In this paper a detailed analysis focused on lumped parameters numerical modeling of a variable displacement vane pump for high speed internal combustion engine lubrication is presented and discussed. This particular volumetric unit is characterized by very extreme performance, both in terms of rotational speed, delivery pressure and displacement variation. First of all, a comprehensive description of the simulation environment properly tailored for the numerical modeling of the vane pump operation is introduced and all its geometric, kinematic and fluid-dynamic characteristics are described in depth. Then, the results coming from an exhaustive experimental campaign have been compared with simulations, finding a general good accordance that demonstrates the reliability of this numerical approach.
Technical Paper

The Influence of Cavitation and Aeration in a Multi-Fuel Injector

2008-10-06
2008-01-2390
The internal flow field of a low pressure common rail type multi-fuel injector is analyzed by means of numerical simulation and particular attention is devoted to the cavitation and aeration phenomena when using different fuel mixtures. The fluid-dynamics open source OpenFOAM code is used; and the original cavitation model (based on a barotropic equation of state and homogeneous equilibrium assumption) is extended in order to account also for gases dissolved in the liquid medium. The effect of air dissolution into liquid is determined by introducing the Henry law for the equilibrium condition and the time dependence of solubility is calculated on a Bunsen Coefficient basis. A preliminary study of test cases available in literature is carried out to address the model predictive capabilities and grid dependency. The calculated pressure distribution and discharge coefficient for different nozzle shapes and operating conditions are compared with the referenced experimental measurements.
Technical Paper

Injection System Control for a Multi-Fuel SI Engine

2008-06-23
2008-01-1729
In this paper, the dependency on fuel blends of a four stroke, four cylinder SI engine equipped with a low pressure common rail type injection system is analyzed. With reference to an operating condition using E21 (21% ethanol, 79% gasoline) as a fuel, the experimental performance of the engine are firstly introduced, and the brake power, the specific fuel consumption, the total efficiency, the heating combustion power and the injected mass per stroke dependency on shaft speed are introduced. Then, the multi-fuel injection system actual behavior is predicted by means of a properly tailored lumped and distributed numerical model, whose general reliability is defined mainly in terms of injected mass per stroke. Afterward, the engine performance variation with the fuel mixture is determined, and the adaptation of the PWM control applied to injectors is proposed to compensate the engine operating characteristics.
Technical Paper

Numerical Analysis of the Fuel Mixing Process in a Multi-Fuel Injection System

2008-06-23
2008-01-1641
The paper focuses on the mixing process of different fuels in a multi-fuel low pressure common rail injection system for a four stroke SI engine. The study is devoted to the prediction of the fuel mixture delivered by the injectors during a transient in which gasoline is being replaced by ethanol or a gasoline/ethanol blend. An integrated approach of different numerical tools is used to model the rail dynamic behavior under actual operating conditions. First, the 1D model of the injection system is constructed and the time varying conditions at the accumulator inlet and at the injectors' boundaries are assessed. The second step of the study is centered on the CFD analysis of the mixing process within the rail. The effects of the different engine operations on the fuels mixing are investigated and the injected fuel distribution among the cylinders is calculated. An open source computational fluid dynamics code is used in the simulations.
Technical Paper

A CFD Multidimensional Approach to Hydraulic Components Design

2007-10-30
2007-01-4196
This paper presents a multidimensional approach to the hydraulic components design by means of an open-source fluid dynamics code. A preliminary study of a basic geometry was carried out by simulating the efflux of an incompressible fluid through circular pipes. Both laminar and turbulent conditions were analyzed and the influence of the grid resolution and modeling settings were investigated. A qualitative description of the internal flow-field distribution, and a quantitative comparison of pressure and velocity profiles along the pipe axis were used to asses the multidimensional open-source code capabilities. Moreover the results were compared with the experimental measurements available in literature and with the theoretical trends which can be found in well-known literature fundamentals (Hagen-Poiseuille theory and Nikuradse interpolation). Further comparison was performed by using a commercial CFD code.
Technical Paper

A CFD Analysis of a Multi-Fuel Injection System Rail

2007-10-29
2007-01-4020
Flexibility in running with different fuel is becoming an important issue in the Internal Combustion Engine design due to the increasingly wider use of alternative fuels. The injection systems must deal with fuels having different properties and effects on engine behavior and take proper adjustments in the control strategy. Particularly the transient during which one fuel is being replaced by the second one is a critical point of the injection system operation, and its capability of recognizing the fuel mixture currently available is a fundamental matter in the engine control development. This paper focuses on the multidimensional CFD analysis of a Common Rail type multi-fuel injection system accumulator during the gasoline - ethanol shift. An open source computational fluid dynamics code was used in the modeling.
X