Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Control of Microwave Plasma for Ignition Enhancement Using Microwave Discharge Igniter

2017-09-04
2017-24-0156
The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for ignition improvement inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW signal which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different MW signal parameters that were used for the control of MDI were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
Technical Paper

Ignition of Propane-Air Mixtures by Miniaturized Resonating Microwave Flat-Panel Plasma Igniter

2017-09-04
2017-24-0150
Recent trend in gasoline-powered automobiles focuses heavily on reducing the CO2 emissions and improving fuel efficiency. Part of the solutions involve changes in combustion chamber geometry to allow for higher turbulence, higher compression ratio which can greatly improve efficiencies. However, the changes are limited by the ignition-source and its location constraint, especially in the case of direct injection SI engines where mixture stratification is important. A new compact microwave plasma igniter based on the principle of microwave resonance was developed and tested for propane combustion inside a constant volume chamber. The igniter was constructed from a thin ceramic panel with metal inlay tuned to the corresponding resonance frequency. Microwaves generated by semiconductor based oscillator were utilized for initiation of discharge. The small and flat form factor of the flat panel igniter allows it to be installed at any locations on the surface of the combustion chamber.
Journal Article

Application of High-Speed PIV Diagnostics for Simultaneous Investigation of Flow Field and Spark Ignited Flame inside an Optical SI Engine

2017-03-28
2017-01-0656
High speed, time resolved Particle Image Velocimetry (PIV) diagnostics was applied to an optical SI engine to study the interactions between in-cylinder flow field and flame development. Optimisation and certain adaptations have been made to the diagnostic setup to enable time-resolved, simultaneous measurements of both PIV data and flame tomography imaging from the same original captured image set. In this particular study, interactions between flow and flame during lean-burn operating conditions at various tumble strength have been investigated and compared to a standard stoichiometric operation. Diagnostics were performed for both the vertical plane (x-y) and the horizontal plane (r-⊖) of the combustion chamber with a particular focus in the pent-roof area. Some major differences in the tumble flow-field prior to ignition has been observed between the lean and stoichiometric conditions.
Technical Paper

Development of Innovative Microwave Plasma Ignition System with Compact Microwave Discharge Igniter

2015-09-06
2015-24-2434
Extending the lean limit or/and exhaust-gas-recirculation (EGR) limit/s are necessary for improving fuel economy in spark ignition engines. One of the major problems preventing the engine to operate at lean conditions is stable and successful initial ignition kernel formation. A repeatable, stabilized ignition and early flame development are quite important for the subsequent part of the combustion cycle to run smooth without partial burn or cycle misfire. This study aims to develop an innovative plasma ignition system for reciprocating combustion engines with an aim to extend lean limit and for high pressure applications. This ignition system utilizes microwaves to generate plasma as an ignition source. This microwave plasma igniter is much simplified device compared to conventional spark plug. The microwave plasma ignition system consists of microwave oscillator, co-axial cable and microwave discharge igniter (MDI).
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
Technical Paper

Improvement of Lean Limit and Fuel Consumption Using Microwave Plasma Ignition Technology

2012-04-16
2012-01-1139
A plasma combustion system was developed to improve fuel economy and efficiency without modifying the engine configuration. Non-thermal plasma generation technology with microwave was applied. Plasma was generated by spark discharge and expanded using microwaves that accelerated the plasma electrons, generating non-thermal plasma. Even at high pressures, spark discharge occurred, allowing plasma generation under high pressures. The durability and practicality of previous plasma combustion systems was improved. The system consisted of a spark plug without a resistor, a mixer circuit, and a control system. The mixer unit used a standard spark plug for plasma combustion and functioned as a high-voltage and high-frequency isolator. A commercially available magnetron produced microwaves of 2.45 GHz. The spark and microwave control system used a trigger signal set to the given crank angle, from the engine control unit.
Technical Paper

Extending the Lean Stability Limits of Gasoline Using a Microwave-Assisted Spark Plug

2011-04-12
2011-01-0663
The extension of the lean stability limits of gasoline-air mixtures using a microwave-assisted spark plug has been investigated. Experiments are conducted on a 1200 RPM single-cylinder Waukesha Cooperative Fuel Research (CFR) engine at two compression ratios: 7:1 and 9:1; and four different levels of microwave energy input per cycle (prior to accounting for transmission losses): 0 mJ (spark only), 130 mJ, 900 mJ, and 1640 mJ. For various microwave energy inputs, the effects upon stability limits are explored by gradually moving from stoichiometric conditions to increasingly lean mixtures. The coefficient of variation (COVIMEP) of the indicated mean effective pressure (IMEP) is used as an indication of the stability limits. Specific characteristics of microwave-assisted ignition are identified. Microwave enhancement extends stability limits into increasingly lean regions, but slow and partial burning at the leanest mixtures curb efficiency gains.
Technical Paper

Research and Development of Microwave Plasma Combustion Engine (Part II: Engine Performance of Plasma Combustion Engine)

2009-04-20
2009-01-1049
The objective of this study was to develop an innovative microwave-induced plasma ignition system to improve the fuel economy of a current engine and achieve a higher efficiency without any configuration modifications. A new plasma generation technique was proposed for a stable and intense ignition source. A microwave plasma combustion system was developed consisting of a spark plug, microwave transfer system, and control system. A magnetron, like that found in a microwave oven, was used as a microwave oscillator. The spark plug had a microwave antenna inside that generated plasma in the engine cylinders. The microwave transfer system transmitted microwave power from the oscillator to the antenna. Combustion experiments were performed using a single-cylinder research engine. The microwave plasma expanded the range of lean operating conditions. The single-cylinder engine had an indicated mean effective pressure (IMEP) of 275 kPa at an engine speed of 2000 rpm.
Technical Paper

Research and Development of Microwave Plasma Combustion Engine (Part I: Concept of Plasma Combustion and Plasma Generation Technique)

2009-04-20
2009-01-1050
This study aims to develop innovative plasma combustion system to improve fuel economy and achieve higher efficiency without any modification of current engine configuration. A new plasma generation technique, that used a combination of spark discharge and microwave, was proposed. This technique was applied to gasoline engine as an ignition source, which was intensive and stable even in lean condition. In this technique, firstly, small plasma source was generated by spark discharge. Secondly, microwave was radiated to the plasma source to expand the plasma. The microwave power was absorbed by the plasma source and large non-thermal plasma was formed. In non-thermal plasma, the electron temperature was high and the gas temperature was low. Then many OH radicals were generated in the plasma. The frequency of the microwave was 2.45 GHz because we used a magnetron for microwave oven. Magnetrons for microwave oven were high efficiency and reasonable.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
Technical Paper

In-spark-plug Sensor for Analyzing the Initial Flame and Its Structure in an SI Engine

2005-04-11
2005-01-0644
An in-spark-plug flame sensor was developed to measure local chemiluminescence near the spark gap in a practical spark-ignition (SI) engine in order to study the development of the initial flame kernel, flame front structure, transient phenomena, and the correlation between the initial flame kernel structure and cyclic variation in the flame front structure, which influences engine performance directly. The sensor consists of a commercial instrumented spark plug with small Cassegrain optics and an optical fiber. The small Cassegrain optics were developed to measure the local chemiluminescence intensity profile and temporal history of OH*, CH*, and C2* at the flame front formed in a turbulent premixed flame in an SI engine. A highresolution monochromator with an intensified chargecoupled device (ICCD) and spectroscopy using optical filters and photomultiplier tubes (PMTs) were used to measure the time-series of the three radicals, as well as the in-cylinder pressure.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to Spark Ignition Engine

2003-03-03
2003-01-1109
This study measured the fuel concentration near a spark plug using a laser infrared absorption method. An IR spark plug sensor with a double-pass measurement length was developed. A He-Ne laser with a wavelength of 3.392 μm, which coincides with the absorption line of hydrocarbons, was used as the light source. In order to confirm the measurement accuracy, the concentrations of a methane-air mixture were measured in a compression-expansion engine. Then, the IR spark plug sensor was used for measurements in a 4-stroke spark-ignition engine fuelled with isooctane. The air/fuel ratio measured using this system clearly agreed with the mean air/fuel ratio.
X