Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Advanced Methodology to Investigate Knock for Downsized Gasoline Direct Injection Engine Using 3D RANS Simulations

2017-03-28
2017-01-0579
Nowadays Spark Ignition (SI) engine developments focus on downsizing, in order to increase the engine load level and consequently its efficiency. As a side effect, knock occurrence is strongly increased. The current strategy to avoid knock is to reduce the spark advance which limits the potential of downsizing in terms of consumption reduction. Reducing the engine propensity to knock is therefore a first order subject for car manufacturers. Engineers need competitive tools to tackle such a complex phenomenon. In this paper the 3D RANS simulations ability to satisfactorily represent knock tendencies is demonstrated. ECFM (Extended Coherent Flame Model) has been recently implemented by IFPEN in CONVERGE and coupled with TKI (Tabulated Kinetics Ignition) to represent Auto-Ignition in SI engine. These models have been applied on a single cylinder engine configuration dedicated to abnormal combustion study.
Technical Paper

Experimental Methodology for the Understanding of Soot-Fuel Relationship in Diesel Combustion: Fuel Characterization and Surrogate Validation

2017-03-28
2017-01-0721
This paper is a contribution to the understanding of the formation and oxidation of soot in Diesel combustion. An ECN spray A injector (single axial-oriented orifice) was tested in a well characterized high-temperature/high-pressure vessel at engine relevant conditions. The size of the test section (>70mm) enables to study the soot formation process in nearly free field conditions, which constitutes an ideal feature for fundamental understanding and model validation. Simultaneous high-speed OH* chemiluminescence imaging and high-speed 2D extinction were performed to link together the information regarding flame chemistry (i.e. lift-off length) and the soot data. The experiments were carried out for a set of fuels with different CN and sooting index (Diesel fuel, Jet fuel, gasoline and n-dodecane) performing parametric variations in the test conditions (ambient temperature and oxygen concentration).
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

A Sectional Soot Model for RANS Simulation of Diesel Engines

2014-04-01
2014-01-1590
In this paper, a sectional soot model coupled to a tabulated combustion model is compared with measurements from an experimental engine database. The sectional soot model, based on the work of Vervisch-Klakjic (Ph.D. thesis, Ecole Centrale Paris, Paris, 2011) and Netzell et al. (P. Combust. Inst., 31(1):667-674, 2007), has been implemented into IFPC3D (Bohbot et al., Oil Gas Sci Technol, 64(3):309-335, 2009), a 3D RANS solver. It enables a complex modeling of soot particles evolution, in a 3D Diesel simulation. Five distinct source terms are applied to each soot section at any time and any location of the flow. The inputs of the soot model are provided by a tabulated combustion model derived from the Engine Approximated Diffusion Flame (EADF) one (Michel and Colin, Int. J. Engine Res., 2013) and specifically modified to include the minor species required by the soot model.
Technical Paper

Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD

2013-04-08
2013-01-1093
In this paper three turbulent combustion models with different underlying hypothesis are compared with measurements from an extensive experimental database. The reference model is ECFM3Z, with the Tabulated Kinetics of Ignition (TKI) model for auto-ignition modeling, together with the CO reduced kinetics (CORK) model and the extended Zeldovich model for the nitrogen oxides. The VVTHC (Variable Volume Tabulated Homogeneous Chemistry) model predicts both the heat release and species evolutions (including CO). The most evolved model proposed is the ADF-PCM (Approximated Diffusion Flame-Presumed Conditional Moment) approach, based on the laminar flamelet equation of the progress variable. ADF-PCM and VVTHC are tabulated models based on a progress variable approach and are then coupled to the tabulated NO model NORA based on relaxation (NO Relaxation Approach). All the present combustion models are coupled to a phenomenological soot kinetics PSK approach.
Technical Paper

Modeling of Pollutant Emissions Using Combined Tabulated Detailed Kinetics and Reduced Kinetics

2010-04-12
2010-01-0628
In the context of low consumption and low emissions engines development, combustion processes modeling is a challenging subject as the requirements for accurately controlled pollutant emissions are becoming more stringent. From a scientific point of view, it is a major source of in-depth investigations as the chemical processes involved are strongly coupled to the flow characteristics. Among the various approaches developed recently to account for these processes in realistic configurations, tabulated techniques appear to be a promising way. They induce a good compromise between the accuracy of detailed chemistry and the computational time necessary to calculate complex configurations. Tabulation approaches were firstly developed to address the modeling of species concentrations in stationary combustors. They consist basically of pre-computed chemical kinetics using detailed mechanisms.
Technical Paper

Modeling Engine Turbulent Auto-Ignition Using Tabulated Detailed Chemistry

2007-04-16
2007-01-0150
In Homogeneous Charge Compression Ignition (HCCI) as well as in conventional Diesel engine, fuel oxidation chemistry determines the ignition timing and the subsequent heat release. Auto-ignition is characterized by the production of large active intermediate radicals during the initial stage of oxidation. This makes the modeling task more complex, as it demands high computing resources to solve several hundreds of species transport equations involved in the detailed chemical mechanism. Therefore, introduction of complex chemistry details into a CFD code in a simple way is necessary. A new 3D auto-ignition model Tabulated Kinetics for Ignition with Probability Density Function (TKI-PDF) is presented. The objective is to include detailed chemical kinetics and the turbulence/chemistry interactions during auto-ignition. The model development and the validation against experiments are described in two stages.
Technical Paper

Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine

2007-04-16
2007-01-0151
The LES technique has been applied to the simulation of 9 consecutive complete engine cycles of a single cylinder, spark-ignited 4valve engine. The simulations have been realized with the AVBP code, jointly developed by IFP and CERFACS. An extended coherent flame model approach (ECFM-LES) has been used to model spark ignition and turbulent combustion, and is shortly presented, along with the used turbulence models. The engine was fuelled with gaseous propane injected far upstream from the intake, so that fuel injection was not simulated, the fresh charge being assumed to be homogeneous. After a description of the numerical set-up, results obtained with LES are compared with experimental findings on cycle to cycle cylinder pressure evolutions. It is shown that LES indeed captures qualitatively the observed cyclic variability of the engine, even with only 9 cycles simulated.
Technical Paper

Improved Modelling of DI Diesel Engines Using Sub-grid Descriptions of Spray and Combustion

2003-03-03
2003-01-0008
Three dimensional CFD tools are commonly used to simulate spray injection and combustion in DI Diesel engines. However typical computations are strongly mesh dependent. By now it is not possible to enhance grid resolution since it would violate the underlying assumptions for the Lagrangian liquid phase description. Besides, a full Eulerian approach with an adapted mesh is not practical at the moment mainly because of prohibitive computer requirements. Based on the Lagrangian-Eulerian approach, new approaches have been developed: the Coupled Lagrangian-Eulerian (CLE) model for the two-way coupling between the spray and the air flow and a new combustion model (CFM3Z) which allows a description of the fuel-oxidizer sub-grid mixing. The previously introduced CLE model consists in retaining vapor and momentum along parcel trajectories as long as the mesh is insufficient to resolve the steep gradients created by the spray.
X