Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Fuel Tank Strap Fatigue Sensitivity Study under Fuel Level Variation and Payload Variation

2014-04-01
2014-01-0921
Fuel Tank Straps very often get different durability fatigue test results from different types of durability testing such as shaker table vibration, road test simulator (RTS) vehicle testing and proving ground vehicle durability testing. One test produces good durability results and other may indicate some durability risk. A special study was conducted to address this inconsistency. It was found that fuel level in the tank plays a big role in fuel tank strap durability. Higher fuel levels in a tank produce higher loads in straps and lower fatigue life. This paper will use a CAE fuel tank strap model and acquired proving ground strap load data to study fuel level influence in fuel tank strap durability. The fuel level study includes a full tank of fuel, 3 quarters tank of fuel, a half tank of fuel and one quarter tank of fuel.
Technical Paper

Application of the Glinka's ESED Criterion in Optimization Design

2014-04-01
2014-01-0912
In order to take into account the local material non-linear elastic-plastic effects generated by notches, Glinka proposed the equivalent strain energy density (ESED) Criterion which has been widely accepted and used in fatigue theory and calculation for the last few decades. In this paper, Glinka's criterion is applied to structural optimization design for elastic-plastic correction to consider material non-linear elastic-plastic effects. The equivalent (fictitious) stress was derived from Glinka's Criterion equation for the commonly used Ramberg-Osgood and bi-linear stress and strain relationships. This equivalent stress can be used as the stress boundary constraint threshold in structural optimization design to control the elastic-plastic stress or strain in nonlinear optimization.
Technical Paper

Application of Noise Path Target Setting Using the Technique of Transfer Path Analysis

2003-05-05
2003-01-1402
The scope of this paper is to describe how system level NVH targets are cascaded down to sub system level targets using the technique of Transfer Path Analysis (TPA). In the early stages of a vehicle design program target vehicles for the new vehicle are selected based on their subjective Noise, Vibration, and Harshness (NVH) performance. A reference vehicle for the new product will be selected which will be used as a baseline vehicle for the whole vehicle program. Noise and vibration measurements will be taken on both the reference and target vehicles under multiple load conditions. The simulation target for the new product will be derived from the measurements of reference vehicle, measurements of target vehicle, and the simulation of reference vehicle model. Reverse Transfer Path Analysis tools will be used to quantify the subsystem targets for the new vehicle based on the simulation targets and design intent simulation models of new product.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Use of SFE CONCEPT in Developing FEA Models without CAD

2000-10-03
2000-01-2706
What is described is a new tool for creating parametric, concept-level FEA body models without waiting for geometry created in a CAD system. This has the obvious advantage of putting CAE in a position to lead the design activity instead of reacting to it. The process for creating the concept FEA models will be described along with a verification test case in which crash and stiffness results from the concept modeler are compared with FEA results created in the more traditional way using CAD data.
X