Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

CFD Investigations of Wind Tunnel Interference Effects

2007-04-16
2007-01-1045
Wind tunnel interference effects are still considered to be negligible - or at least undesired - in automotive aerodynamics. Consequently, up to now there is no standard correction method which is used in everyday wind tunnel testing although a lot of research has been done in recent years. In most full-vehicle CFD simulations, wind tunnel interference effects are not simulated. The flow about the car is computed under idealized conditions. The wind tunnel is designed to simulate these conditions but fails to do so to some degree due to its limited size. Therefore a comparison of blockage-free CFD results and wind tunnel measurements is deficient. Hence CFD simulations including wind tunnel interference effects should be favored in the future for validation purposes. Furthermore, CFD offers new possibilities to investigate individual contributions to wind tunnel interference effects and therefore could help to increase the understanding of the flow in the wind tunnel.
Technical Paper

CFD Validation Study for a Sedan Scale Model in an Open Jet Wind Tunnel

2008-04-14
2008-01-0325
Aerodynamic simulations using CFD is now a standard tool in the automotive industry, and is becoming more and more integrated in the aerodynamic design process of new vehicles. This process is distinguished by parallel development with wind tunnel experiments and CFD simulation results, which demands comparable results to be generated by the two development tools. As wind tunnel effects are not simulated in most industrial applications of CFD, the comparison with experimental results normally show differences partly due to wind tunnel effects and ground simulation effects. Therefore a deeper understanding of wind tunnel effects and methods to fully reproduce experimental values with CFD is necessary. In this paper, an extensive validation study with a detailed scale notchback model inside an open jet wind tunnel is presented. This study includes experimental data from the real wind tunnel as well as CFD simulation results with and without wind tunnel effects.
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Technical Paper

Further Investigations on Gradient Effects

2004-03-08
2004-01-0670
In automotive wind tunnels with modern road simulation installations boundary layer pre-suction is a widely-used technique for boundary layer control. The consequence of boundary layer pre-suction is an additional pressure gradient in front of the model. In order to investigate the effects of the additional pressure gradient on drag, experiments were conducted with two different models (scale 1:5) in the IVK Model Wind Tunnel. In these experiments the suction velocity of the boundary layer pre-suction served as a parameter to change the static pressure gradient along the test section and was for this purpose adjusted higher and lower than the standard suction velocity. It is shown that the total drag increment due to boundary layer pre-suction consists of at least two parts: the ground simulation increment and the static pressure gradient increment. The ground simulation increment is due to a decrease in the boundary layer thickness and the resulting modified flow beneath the model.
Technical Paper

The Influence of a Horizontal Pressure Distribution on Aerodynamic Drag in Open and Closed Wind Tunnels

2005-04-11
2005-01-0867
The influence on aerodynamic drag of a non-uniform, streamwise pressure distribution over the wake of an automobile model in both open-jet and closed-jet wind tunnels is considered in this paper. It has long been an unsolved issue in the theory of open-jet interference and is usually not important in closed-wall wind tunnels unless the model is very long. A new, semi-empirical approach is presented that is based on the observation that the drag changes due to a pressure gradient over a wake correlate with the empty-test-section pressure-coefficient difference between the base of the vehicle and the position of wake closure. A method is demonstrated that is able to remove the effect of the pressure gradient and that is not buoyancy related. This method is applied to a range of simplified and detailed automobile shapes at model scale and at full scale in various wind tunnels, as well as to normal flat plates.
X