Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Simulation Model for Low-Speed Bumper-to-Bumper Crashes

2010-04-12
2010-01-0051
The purpose of this study was to develop a numerical analytical model of collinear low-speed bumper-to-bumper crashes and use the model to perform parametric studies of low-speed crashes and to estimate the severity of low-speed crashes that have already occurred. The model treats the car body as a rigid structure and the bumper as a deformable structure attached to the vehicle. The theory used in the model is based on Newton's Laws. The model uses an Impact Force-Deformation (IF-D) function to determine the impact force for a given amount of crush. The IF-D function used in the simulation of a crash that has already occurred can be theoretical or based on the measured force-deflection characteristics of the bumpers of the vehicles that were involved in the actual crash. The restitution of the bumpers is accounted for in a simulated crash through the rebound characteristics of the bumper system in the IF-D function.
Technical Paper

Evaluation of Thoracic and Lumbar Accelerations of Volunteers in Vertical and Horizontal Loading Scenarios

2010-04-12
2010-01-0146
There are exposures of the body to accelerations in the lumbar and thoracic regions on a regular basis with everyday activities and exercises. The purpose of this study was to evaluate the response of the thoracic and lumbar regions in human volunteers subjected to vigorous activities. A total of 181 tests include twenty volunteers subjected to four test scenarios: “plopping” down in a seat, a vertical jump, a vertical drop while in a supine position, and a vertical drop while seated upright in a swing. Each of the latter three activities included three severity levels with drop heights ranging from 25 mm to 900 mm. Volunteers selected represent the anthropometry of the general population including males and females at a wide range of weights (54 to 99 kg), heights (150 to 191 cm), and ages (26 to 58 years old). Instrumentation for each volunteer included tri-axial accelerometers attached to custom-fit mounts that were secured around the lumbar and upper thoracic regions.
Technical Paper

Validation and Application of a Methodology to Calculate Head Accelerations and Neck Loading in Soccer Ball Impacts

2009-04-20
2009-01-0251
Calculating head accelerations and neck loading is essential for understanding and predicting head and neck injury. Most of the desired information cannot be directly measured in experiments with human volunteers. Achieving accurate results after applying the necessary transformations from remote measurements is difficult, particularly in the case of a head impact. The objective of this study was to develop a methodology for accurately calculating the accelerations at the center of gravity of the head and the loads and moments at the occipital condyles. To validate this methodology in a challenging test condition, twenty (20) human volunteers and a Hybrid III dummy were subjected to forehead impacts from a soccer ball traveling horizontally at speeds up to 11.5 m/s. The human subjects and the Hybrid III were instrumented with linear accelerometers and an angular rate sensor inside the mouth.
Technical Paper

Analytical Model for Investigating Low-Speed Sideswipe Collisions

2004-03-08
2004-01-1185
Vehicle dynamics in sideswipe collisions are markedly different from other types of collisions. Sideswipe collisions are characterized by prolonged sliding contact, often with very little structural deformation. An analytical model was developed to investigate the vehicle dynamics of sideswipe collisions. The vehicles were modeled as rigid bodies, and lateral interaction between the vehicles was modeled with a linear elastic spring. This linear spring was meant to represent the combined lateral stiffness of both vehicles before significant crush develops. Longitudinal interaction between the vehicles was modeled as frictional contact. In order to validate the model, seven (7) low speed (3 - 10 kph), shallow angle (15°) sideswipe collisions were staged with instrumented vehicles. These sideswipe collisions were characterized by long contact durations (∼ 1 s) and low accelerations (< 0.4 g's). The experimental collisions were also simulated with EDSMAC.
X