Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

PRF and Toluene/n-heptane Mixture Comparison in HCCI Mode Ignition Using Transient Species Measurements and Simplified Model Analysis, Supported by 0-D and 3-D Simulations

2015-09-01
2015-01-1787
Exhaust gas analysis has been conducted for a test engine operated in HCCI mode at hot ignition suppressed condition, to detect intermediate species formed in low temperature oxidation (LTO). PRF (isooctane/ n-heptane) and NTF (toluene/ n-heptane) were used as fuel mixtures. The LTO fuel consumption decreases with increasing iso-octane content in PRF and toluene content in NTF, but only NTF showed a nonlinear effect. These tendencies were reproduced by O-D and 3-D simulations with detailed chemistry; however, quantitative differences were found between chemical models. The essential mechanism of high octane number fuel affecting the ignition property of n-heptane is discussed by developing a simplified model summarizing chain reaction of LTO, in which OH reproduction and fuel + OH reaction rate play important roles.
Journal Article

Comparison of PRF and toluene/n-heptane mixture fuel in the mechanism of compression ignition using CA resolved sampling

2011-08-30
2011-01-1785
Chemical kinetic mechanism of compression ignition with PRF (iso-octane/ n-heptane) and NTF (toluene/ n-heptane) is investigated according to crank angle resolved in-cylinder sampling experiments. Profiles of two-stage consumption of fuel components in accordance with the timings of heat releases have been obtained. As well, production and consumption of intermediate species were observed. It was found that toluene consumption at the first stage is considerably less than that of n-heptane, whereas iso-octane consumption is comparable to that of n-heptane, which is accounted for by the smaller rate constant of toluene with OH. N-heptane and iso-octane are considered to produce formaldehyde; however, toluene has no or little contribution.
Journal Article

Chemical Kinetic Mechanism of Compression Ignition Derived from Intermediate Species for PRF and Toluene/n-Heptane Fuel Systems

2011-08-30
2011-01-1784
Intermediate species formed in the cool ignition stage of autoignition were evaluated by exhaust gas analysis with FT-IR in a test engine at hot ignition suppressed conditions. PRF (iso-octane/n-heptane) and NTF (toluene/n-heptane) were used as the fuels. The fuel consumption rate decreases with increasing iso-octane content in PRF and toluene content in NTF. HCHO generation rate increases with increasing iso-octane content in PRF but the opposite trend was found in NTF. These tendencies correspond to the difference in the detail reaction mechanism for PRF and NTF oxidation.
Technical Paper

Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines

2006-10-16
2006-01-3299
Autoignition in the homogeneous charge compression ignition (HCCI) process typically exhibits heat release in two stages called cool flame and thermal flame. The mechanisms governing these two stages were investigated using a DME-fueled HCCI engine and numerical simulations. Composition analysis after cool flame showed that the cool flame is explained by a chain reaction mechanism in which the chain terminator is the intermediate species formed in cool flame. In the case of thermal flame, although the chain reaction mechanism is complex, the behavior is clearly described by thermal explosion theory in which the rate-determining reaction is H2O2 decomposition.
Technical Paper

A Chemical Mechanistic Analysis on Compression Ignition Process of Straight Chain Alkanes

2004-06-08
2004-01-1912
Applicability of detailed chemical kinetic models to HCCI runs in terms of ignition timings and intermediate species composition has been investigated. An existed n-heptane model and its expansion to n-decane established in this study were particularly concerned. Exhaust gas analysis showing transient composition after cool flames indicated that the unmodified n-decane model overestimates fractions of various grade of aldehydes, whereas it represents experimental ignition timings. The aldehyde yield was found to be sensitive to reactions of aldehyde with OH rather than aldehyde formation reactions. Reactions of QOOH decomposition forming HO2 were also suggested as a candidate to be revised for the model improvement on ignition delays.
X