Refine Your Search

Topic

Search Results

Author:
Technical Paper

Quantifying the Costs of Charger Availability Uncertainty for Residents of Multi-Unit Dwellings

2024-04-09
2024-01-2034
Even when charging at the highest rates currently available, Electric Vehicles (EVs) add range at substantially lower rates than Internal Combustion Engine Vehicles (ICVs) do while fueling. In addition, DC charging comes at a cost premium and leads to accelerated battery degradation. EV users able to rely on AC charging during long dwells at home or work may experience cost and time savings relative to ICV users with similar driving patterns. However, EV users unable to charge during long dwells will face higher charging costs and higher dedicated charging time. An important question is how occupants of Multi-Unit Dwellings (MUDs), which provide some AC Electric Vehicle Supply Infrastructure (EVSE) but not enough for all cars to charge at once, will be effected. In this paper the authors’ previously published method for quantifying EV user inconvenience due to charging is extended to deal with stochastic charger availability.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Autonomous Eco-Driving Evaluation of an Electric Vehicle on a Chassis Dynamometer

2023-04-11
2023-01-0715
Connected and Automated Vehicles (CAV) provide new prospects for energy-efficient driving due to their improved information accessibility, enhanced processing capacity, and precise control. The idea of the Eco-Driving (ED) control problem is to perform energy-efficient speed planning for a connected and automated vehicle using data obtained from high-resolution maps and Vehicle-to-Everything (V2X) communication. With the recent goal of commercialization of autonomous vehicle technology, more research has been done to the investigation of autonomous eco-driving control. Previous research for autonomous eco-driving control has shown that energy efficiency improvements can be achieved by using optimization techniques. Most of these studies are conducted through simulations, but many more physical vehicle integrated test application studies are needed.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management

2022-03-29
2022-01-0141
Transportation vehicle and network system efficiency can be defined in two ways: 1) reduction of travel times across all the vehicles in the system, and 2) reduction in total energy consumed by all the vehicles in the system. The mechanisms to realize these efficiencies are treated as independent (i.e., vehicle and network domains) and, when combined, they have not been adequately studied to date. This research aims to integrate previously developed and published research on Predictive Optimal Energy Management Strategies (POEMS) and Intelligent Traffic Systems (ITS), to address the need for quantifying improvement in system efficiency resulting from simultaneous vehicle and network optimization. POEMS and ITS are partially independent methods which do not require each other to function but whose individual effectiveness may be affected by the presence of the other. In order to evaluate the system level efficiency improvements, the Mobility Energy Productivity (MEP) metric is used.
Technical Paper

Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering

2022-03-29
2022-01-0067
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology.
Technical Paper

Quantifying Repeatability of Real-World On-Road Driving Using Dynamic Time Warping

2022-03-29
2022-01-0269
There are numerous activities in the automotive industry in which a vehicle drives a pre-defined route multiple times such as portable emissions measurement systems testing or real-world electric vehicle range testing. The speed profile is not the same for each drive cycle due to uncontrollable real-world variables such as traffic, stoplights, stalled vehicles, or weather conditions. It can be difficult to compare each run accurately. To this end, this paper presents a method to compare and quantify the repeatability of real-world on-road vehicle driving schedules using dynamic time warping (DTW). DTW is a well-developed computational algorithm which compares two different time-series signals describing the same underlying phenomenon but occurring at different time scales. DTW is applied to real-world, on-road drive cycles, and metrics are developed to quantify similarities between these drive cycles.
Technical Paper

High-Fidelity Modeling of Light-Duty Vehicle Emission and Fuel Economy Using Deep Neural Networks

2021-04-06
2021-01-0181
The transportation sector contributes significantly to emissions and air pollution globally. Emission models of modern vehicles are important tools to estimate the impact of technologies or controls on vehicle emission reductions, but developing a simple and high-fidelity model is challenging due to the variety of vehicle classes, driving conditions, driver behaviors, and other physical and operational constraints. Recent literature indicates that neural network-based models may be able to address these concerns due to their high computation speed and high-accuracy of predicted emissions. In this study, we seek to expand upon this initial research by utilizing several deep neural networks (DNN) architectures such as a recurrent neural network (RNN) and a convolutional neural network (CNN). These DNN algorithms are developed specific to the vehicle-out emissions prediction application, and a comprehensive assessment of their performances is done.
Technical Paper

Synchronous and Open, Real World, Vehicle, ADAS, and Infrastructure Data Streams for Automotive Machine Learning Algorithms Research

2020-04-14
2020-01-0736
Prediction based optimal energy management systems are a topic of high interest in the automotive industry as an effective, low-cost option for improving vehicle fuel efficiency. With the continuing development of connected and autonomous vehicle (CAV) technology there are many data streams which may be leveraged by transportation stakeholders. The Suite of CAVs-derived data streams includes advanced driver-assistance (ADAS) derived information about surrounding vehicles, vehicle-to-vehicle (V2V) communications for real time and historical data, and vehicle-to-infrastructure (V2I) communications. The suite of CAVs-derived data streams have been demonstrated to enable improvements in system-level safety, emissions and fuel economy.
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Technical Paper

Colorado State University EcoCAR 3 Final Technical Report

2019-04-02
2019-01-0360
Driven by consumer demand and environmental regulations, market share for plug-in hybrid electric vehicles (PHEVs) continues to increase. An opportunity remains to develop PHEVs that also meet consumer demand for performance. As a participant in the EcoCAR 3 competition, Colorado State University’s Vehicle Innovation Team (CSU VIT) has converted a 2016 Chevy Camaro to a PHEV architecture with the aim of improving efficiency and emissions while maintaining drivability and performance. To verify the vehicle and its capabilities, the CSU Camaro is rigorously tested by means of repeatable circumstances of physical operation while Controller Area Network (CAN) loggers record various measurements from several sensors. This data is analyzed to determine consistent output and coordination between components of the electrical charge and discharge system, as well as the traditional powertrain.
Technical Paper

Vehicle Electrification in Chile: A Life Cycle Assessment and Techno-Economic Analysis Using Data Generated by Autonomie Vehicle Modeling Software

2018-04-03
2018-01-0660
The environmental implications of converting vehicles powered by Internal Combustion Engines (ICE) to battery powered and hybrid battery/ICE powered are evaluated for the case of Chile, one of the worldwide leaders in the production of lithium (Li) required for manufacturing of Li-ion batteries. The economic and environmental metrics were evaluated by techno-economic analysis (TEA) and Life Cycle Assessment (LCA) tools - SuperPro Designer and Gabi®/GREET® models. The system boundary includes both the renewable and nonrenewable energy sources available in Chile and well-to-pump energy consumptions and GHG emissions due to Li mining and Li-ion battery manufacturing. All the major input data required for TEA and LCA were generated using Autonomie vehicle modeling software. This study compares economic and environmental indicators of three vehicle models for the case of Chile including compact, mid-size, and a light duty truck.
Technical Paper

V2V Communication Based Real-World Velocity Predictions for Improved HEV Fuel Economy

2018-04-03
2018-01-1000
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into whether near-term technologies can be utilized to improve FE and the impact of real-world prediction error on potential FE improvements. In this study, a speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication with real-world driving data and a drive cycle database was developed to understand if incorporating near-term technologies could be utilized in a predictive energy management strategy to improve vehicle FE. This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a validated high-fidelity fuel economy model of a Toyota Prius.
Technical Paper

Application of Pre-Computed Acceleration Event Control to Improve Fuel Economy in Hybrid Electric Vehicles

2018-04-03
2018-01-0997
Application of predictive optimal energy management strategies to improve fuel economy in hybrid electric vehicles is an active subject of research. Acceleration events during a drive cycle provide particularly attractive opportunities for predictive optimal energy management because of their high energy cost and limited variability, which enables optimal control trajectories to be computed in advance. In this research, dynamic-programming derived optimal control matrices are implemented during a drive cycle on a validated model of a 2010 Toyota Prius to simulate application of pre-computed control to improve fuel economy over a baseline model. This article begins by describing the development of the vehicle model and the formulation of optimal control, both of which are simulated over the New York City drive cycle to establish baseline and upper-limit fuel economies. Then, optimal control strategies are computed for acceleration events in the drive cycle.
Technical Paper

Towards Improving Vehicle Fuel Economy with ADAS

2018-04-03
2018-01-0593
Modern vehicles have incorporated numerous safety-focused Advanced Driver Assistance Systems (ADAS) in the last decade including smart cruise control and object avoidance. In this paper, we aim to go beyond using ADAS for safety and propose to use ADAS technology to enable predictive optimal energy management and improve vehicle fuel economy. We combine ADAS sensor data with a previously developed prediction model, dynamic programming optimal energy management control, and a validated model of a 2010 Toyota Prius to explore fuel economy. First, a unique ADAS detection scope is defined based on optimal vehicle control prediction aspects demonstrated to be relevant from the literature. Next, during real-world city and highway drive cycles in Denver, Colorado, a camera is used to record video footage of the vehicle environment and define ADAS detection ground truth. Then, various ADAS algorithms are combined, modified, and compared to the ground truth results.
Technical Paper

Enabling Prediction for Optimal Fuel Economy Vehicle Control

2018-04-03
2018-01-1015
Vehicle control using prediction based optimal energy management has been demonstrated to achieve better fuel economy resulting in economic, environmental, and societal benefits. However, research focusing on prediction derivation for use in optimal energy management is limited despite the existence of hundreds of optimal energy management research papers published in the last decade. In this work, multiple data sources are used as inputs to derive a prediction for use in optimal energy management. Data sources include previous drive cycle information, current vehicle state, the global positioning system, travel time data, and an advanced driver assistance system (ADAS) that can identify vehicles, signs, and traffic lights. To derive the prediction, the data inputs are used in a nonlinear autoregressive artificial neural network with external inputs (NARX).
Technical Paper

Economic and Efficient Hybrid Vehicle Fuel Economy and Emissions Modeling Using an Artificial Neural Network

2018-04-03
2018-01-0315
High accuracy hybrid vehicle fuel consumption (FC) and emissions models used in practice today are the product of years of research, are physics based, and bear a large computational cost. However, it may be possible to replace these models with a non-physics based, higher accuracy, and computationally efficient versions. In this research, an alternative method is developed by training and testing a time series artificial neural network (ANN) using real world, on-road data for a hydraulic hybrid truck to predict instantaneous FC and emissions. Parameters affecting model fidelity were investigated including the number of neurons in the hidden layer, specific training inputs, dataset length, and hybrid system status. The results show that the ANN model was computationally faster and predicted FC within a mean absolute error of 0-0.1%. For emissions prediction the ANN model had a mean absolute error of 0-3% across CO2, CO, and NOx aggregate predicted concentrations.
Technical Paper

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

2017-03-28
2017-01-1262
The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
Technical Paper

The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management

2017-01-10
2017-26-0106
Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
Technical Paper

Reducing Effective Vehicle Emissions Through the Integration of a Carbon Capture and Sequestration System in the CSU EcoCAR Vehicle

2016-04-05
2016-01-1251
As the rigor of vehicle pollution regulations increase there is an increasing need to come up with unique and innovative ways of reducing the effective emissions of all vehicles. In this paper, we will describe our development of a carbon capture and sequestration system that can be used in-tandem with existing exhaust treatment used in convention vehicles or be used as a full replacement. This system is based on work done by researchers from NASA who were developing a next generation life support system and has been adapted here for use in a convention vehicle with minimal changes to the existing architecture. A prototype of this system was constructed and data will be presented showing the changes observed in the effective vehicle emissions to the atmosphere. This system has the potential to extract a significant portion of tailpipe emissions and convert them into a form that allows for safe, clean disposal without causing any harm to the environment.
X