Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation of Customer Usage: RENAULT’s Approach for Electric Powertrains

2023-08-28
2023-24-0134
Simulation of Customer Usage is fully integrated in the design and validation process of RENAULT Powertrains. Application of Customer Usage Simulation to Electric Powertrains brings new challenges enhanced by rapidly changing technologies. New customer usage scenarios, for instance vehicle charging, need to be considered. The technological content of e-powertrain components is becoming more and more complex, increasing complexity of numerical simulation models. Consequently, the trade-off between simulation time and accuracy becomes critical. This paper addresses RENAULT’s approach to tackle these issues on electric vehicles currently in development. Some examples of recent customer usage simulation results are presented and discussed. Some of the future planned evolutions are discussed: numerical simulation models must be reduced while keeping the right accuracy level; collected data from connected vehicles will soon be fully integrated as inputs to the simulation.
Technical Paper

Virtual Chassis Dyno for Diesel Engine Tuning and Calibration

2019-09-09
2019-24-0076
Since WLTP introduction in Europe, Exhaust Emission standards are based also on real driving conditions. The tuning and calibration work for Engine-out Emissions and Exhaust After-treatment Systems must therefore include all driving conditions in real life use of the vehicle. This includes temperature conditions, altitude, vehicle load and driving style. Consequently, the workload, cost and duration for the engine and after treatment system calibration activities, based on physical tests as today, are no more compatible with realistic development targets. The purpose of the methodology described in this paper is to replace chassis dyno vehicle tests by Hardware in the Loop, using the Engine Electronic Control Unit as physical part. The vehicle, driver, engine, gearbox are all modeled by 0D/1D simulation running in real time. The methodology used to build the simulation models is described.
Technical Paper

Development of a Fuel Economy and CO2 Simulation Platform for Hybrid Electric Vehicles - Application to Renault EOLAB Prototype

2015-09-06
2015-24-2543
The worldwide trends for future CO2 regulation standards will push car manufacturers for more and more development of Electric and Hybrid Electric Vehicles. Many different configurations of Hybrid Electric Vehicles exist, including parallel hybrid, series hybrid, plug-in hybrids, Battery Electric Vehicles with Range Extender, etc. The choice of the optimal architecture depends on many different parameters, and is a key issue to be solved at the beginning of vehicle development. In order to help decision making in the early phase of projects, simulation tools are essential. A specific simulation platform for simulation of fuel economy and CO2 emissions for hybrid electric vehicles has been developed by Renault.
Technical Paper

Traversing the V-Cycle with a Single Simulation - Application to the Renault 1.5 dCi Passenger Car Diesel Engine

2013-04-08
2013-01-1120
The V-Cycle is a well accepted and commonly implemented process model for systems engineering. The concept phase is represented by the upper-left portion of the V, in which very high level system simulations are the predominant modeling activity. Traveling down the V toward the vertex, sub-system level and component level simulations are employed as one enters the development phase. Finally, the test and validation phase is completed, and is represented by the right side of the V. Simulation tools have historically been used throughout some phases of the V-cycle, and with the ever increasing computing power, and the increasingly accurate and predictive simulation tools available to the engineer, today it is common that simulation is used in every phase of the cycle, from concept straight through the test and validation phases.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
X