Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

Experimental and Analytical Study of Drawbead Restraining Force for Sheet Metal Drawing Operations

2020-04-14
2020-01-0753
Design of sheet metal drawing processes requires accurate information about the distribution of restraining forces, which is usually accomplished by a set of drawbeads positioned along the perimeter of the die cavity. This study is targeting bringing together the results of finite element analysis and experimental data in order to understand the most critical factors influencing the restraining force. The experimental study of the restraining force was performed using drawbead simulator tool installed into a tensile testing machine. Based upon the experimental results, it was observed that the restraining force of the given drawbead configuration is dependent upon the depth of bead penetration, friction between the drawbead surfaces as well as the clearance between the flanges of the drawbead simulator. This clearance is often adjusted during stamping operations to increase or decrease material inflow into the die cavity without any modification in the die.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

2017-03-28
2017-01-0307
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

Sheared Edge Stretchability of Steels Suitable for Automotive Applications

2017-03-28
2017-01-1708
In recent years, dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) are considered as prominent materials in the automotive industry due to superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Another major issue in the trimming of UHSS is tool wear because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic phase in the microstructure. The objective of the current paper is to study the influence of trimming conditions and tool wear on quality and stretchability of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel and compared with other steels such as HSLA 350 and BH210.
Journal Article

Analysis of Tool Wear for Trimming of DP980 Sheet Metal Blanks

2017-03-28
2017-01-0302
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to discuss the methodology of analyzing die wear for trimming operations of UHSS components and illustrate it with some examples of tool wear analysis for trimming 1.5mm thick DP980 steel.
Technical Paper

Characterization of Trimmed Edge of Advanced High Strength Steel

2016-04-05
2016-01-0358
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to study the influence of trimming conditions and tool wear on quality of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel, sheared with six different cutting clearances (from 4% to 40% of the sheet thickness).
Technical Paper

Effect of Tool Stiffness and Cutting Edge Condition on Quality and Stretchability of Sheared Edge of Aluminum Blanks

2016-04-05
2016-01-0348
Stamping die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower trimming edges. For aluminum automotive exterior panels, this translates to a clearance less than 0.1 mm. However, quality of sheared edge and its stretchability are affected by stiffness of the cutting tool against opening of the clearance between the shearing edges. The objective of the study is to investigate the influence of stiffness of trimming or piercing dies against opening of the cutting clearance on sheared edge stretchability of aluminum blanks 6111-T4. For experimental study, one side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface achieved by metal finish. Burr heights of the sheared edge after different trimming configurations with 10% clearance were measured.
Technical Paper

Experimental Study of Stretchability of Sheared Edge of Aluminum Sheet 6111-T4

2015-04-14
2015-01-0513
Experimental results on influence of trimming conditions on the shape of the sheared surface are combined with the results of stretching sheared samples after trimming. The objective of the research described in this paper is to study the mechanism of fracture initiation and cracks propagation during half-a-dog bone tensile test representing sheared edge stretching condition. One side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface. Significant attention was paid to understanding of fracture sources. An interrupted tensile test approach was employed to track fracture initiation and propagation during stretching of sheared surface. The results of the experimental study indicated that multiple sources of fracture were observed in the burr area for trimming with clearances exceeding 10% of the material thickness.
Technical Paper

Experimental Study of Stretchability of Sheared Edge of Aluminum Sheet 6111-T4

2015-04-14
2015-01-0516
Experimental results on influence of trimming conditions on the shape of the sheared surface are combined with the results of stretching sheared samples after trimming. The objective of the research described in this paper is to study the mechanism of fracture initiation and cracks propagation during half-a-dog bone tensile test representing sheared edge stretching condition. One side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface. Significant attention was paid to understanding of fracture sources. An interrupted tensile test approach was employed to track fracture initiation and propagation during stretching of sheared surface. The results of the experimental study indicated that multiple sources of fracture were observed in the burr area for trimming with clearances exceeding 10% of the material thickness.
Technical Paper

Analysis of Methods for Determining Sheared Edge Formability

2011-04-12
2011-01-1062
Imposing tensile stress on an edge of a sheet metal blank is a common condition in many sheet metal forming operations, making edge formability a very important factor to consider. Because edge formability varies greatly among different materials, cutting methods (and their control parameters), it is very important to have access to an experimental technique that would allow for quick and reliable evaluation of edge formability for a given case. In this paper, two existing techniques are compared: the hole expansion test and the tensile test. It is shown that the hole expansion test might not be adequate for many cases, and is prone to overestimating the limiting strain, because the burr on the sheared edge is typically smaller than what is observed in production. The tensile test represents an effective alternative to the hole expansion test. Advantages and disadvantages of each case are discussed.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2009-04-20
2009-01-1175
Presented are analytical and experimental results for both the conventional trimming process and a recently developed robust trimming process, which involves dulling the upper trimming tool and providing elastic offal support. The robust process, which has strong potential to lower the requirements for the accuracy of trim die alignment, is analyzed. Material flow of the trimming process is modeled numerically using the commercially available LS-Dyna finite element program and an in-house finite element program, called Solid 2D. An experimental technique, which provides plane strain material deformation data as a function of hydrostatic pressure has been developed. Experimental results from the plane strain FLD test and a single interrupted trimming test were obtained in order to find agreement between analytical and experimental results. Analysis of the mechanisms of blank separation in conventional trimming and trimming with an elastic scrap support is also provided.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2008-04-14
2008-01-1446
Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.
Technical Paper

Analysis of the Increased Formability of Aluminum Alloy Sheet Formed Using Electromagnetic Forming

2005-04-11
2005-01-0082
One of the main challenges associated with the use of aluminum alloys in the automotive industry is increasing their limited formability. Electromagnetic forming has been considered recently as a way of addressing this issue. Increases in formability for several commercial aluminum alloys have been reported in electromagnetic (EM) and other high speed forming processes. These increases are typically attributed to high strain rate and inertial effects; however, these effects alone cannot account for the increases in formability observed. The present authors have previously reported that the increased formability is likely due to damage suppression caused by the tool/sheet interaction. This paper presents an analysis of this interaction and how it affects the formability of the sheet. Experimental and numerical work was carried out to determine the details of the forming process and its effects on formability, damage evolution and failure.
X