Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Fuel Tank Strap Fatigue Sensitivity Study under Fuel Level Variation and Payload Variation

2014-04-01
2014-01-0921
Fuel Tank Straps very often get different durability fatigue test results from different types of durability testing such as shaker table vibration, road test simulator (RTS) vehicle testing and proving ground vehicle durability testing. One test produces good durability results and other may indicate some durability risk. A special study was conducted to address this inconsistency. It was found that fuel level in the tank plays a big role in fuel tank strap durability. Higher fuel levels in a tank produce higher loads in straps and lower fatigue life. This paper will use a CAE fuel tank strap model and acquired proving ground strap load data to study fuel level influence in fuel tank strap durability. The fuel level study includes a full tank of fuel, 3 quarters tank of fuel, a half tank of fuel and one quarter tank of fuel.
Technical Paper

Development of an Analytical Modeling Method and Testing Procedures to Aid in the Design of Cardan Joints for Front Steerable Beam Axles

2013-04-08
2013-01-0819
The Cardan joint of a steerable beam front axle is a complicated mechanical component. It is subjected to drive torque, speed fluctuations, and joint articulation due to powertrain inputs, steering, and suspension kinematics. This combination of high torque and speed fluctuations of the Cardan joint, due to high input drive torque and/or high steer angle maneuvers, can result in premature joint wear. Initially, some observations of premature wear were not well understood based on the existing laboratory and road test data. The present work summarizes a coordinated program of computer modeling, vehicle Rough Road data acquisition, and physical testing used to predict the joint dynamics and to develop advanced testing procedures. Results indicate analytical modeling can predict forces resulting from Cardan joint dynamics for high torque/high turn angle maneuvers, as represented by time history traces recorded in rough road data acquisition.
Technical Paper

Digital Image Correlation System Application - Measuring Deformation and Load of Convertible Top Fabric

2010-04-12
2010-01-0954
Strain gages have been widely used for measuring strain or deformation. They are very reliable and accurate. However, for application on fabric material, strain gages have their limitations. In this paper, digital image correlation (DIC) is used to measure the deformation around the rear window on a convertible top. The test needed to be non destructive, the vehicle and convertible top could not be damaged. The deformation or strain measured on the fabric was used to estimate the force experienced at the interface between the glass and the fabric during an opening/closing application. A speckle pattern was created on the convertible fabric where deformation was to be measured with washable paint. The image of the measured area was first recorded. The convertible top was then latched down and the fabric was stretched. A second image was recorded again. Based on the two images, the deformation/strain between the two conditions was measured.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Determination of Whole Field Residual Strain Measurement Using 3D-DSPI and Incremental Hole Drilling

2006-04-03
2006-01-0764
An experimental setup utilizing 3D-Digital Speckle Pattern Interferometry (DSPI) 1,2 and Incremental hole drilling is being applied for the non-contact, fast and accurate determination of residual strain as a function of depth. From the measured phase maps using the DSPI technique we can determine the surface deformations in a whole field area around a drilled hole and thus relate these released strains to the residual strains existing in the material. Incremental hole drilling3,4 has been coupled with residual stress measurement to provide a means to estimate the residual stresses as a function of depth. Unlike the traditional holography with a manualevaluation5 in this case the system can quantitatively determine the deformation data in x, y and z directions for various depth increments and thus finally provides us with the residual strains as a function of depth.
Technical Paper

Non-Destructive Evaluation of Spot Weld Using Digital Shearography

2005-04-11
2005-01-0491
Spot Welding is now widely used in the fabrication of sheet metals, mainly due to the cost and time considerations. Spot welds are found in nearly all products where sheet metal is joined. Examples range from a single metal toolbox to nearly 10,000 spot welds found in a typical passenger car. Obviously the quality of the spot weld has a direct impact on the quality of the product. The problem of estimating the spot-weld quality is an important component in quality control. If the weld nuggets are improperly or incompletely formed, or the area surrounding the nugget is smaller than required, the structural integrity of the entire part may be uncertain. Furthermore these inconsistencies are usually internal and are seldom visible to Optical Inspection. This study is focused on the non-destructive evaluation of the spot welds using “Digital Shearography”.
X