Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Air Conditioning System Performance and Vehicle Fuel Economy Trade-Offs for a Hybrid Electric Vehicle

2017-03-28
2017-01-0171
In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Methodology for Assessment of Alternative Hybrid Electric Vehicle Powertrain System Architectures

2012-04-16
2012-01-1010
Hybrid electric vehicle (HEV) systems offer significant improvements in vehicle fuel economy and reductions in vehicle generated greenhouse gas emissions. The widely accepted power-split HEV system configuration couples together an internal combustion engine with two electric machines (a motor and a generator) through a planetary gear set. This paper describes a methodology for analysis and optimization of alternative HEV power-split configurations defined by alternative connections between power sources and transaxle. The alternative configurations are identified by a matrix of kinematic equations for connected power sources. Based on the universal kinematic matrix, a generic method for automatically formulating dynamic models is developed. Screening and optimization of alternative configurations involves verification of a set of design requirements which reflect: vehicle continuous operation, e.g. grade test; and vehicle dynamic operation such as acceleration and drivability.
Journal Article

Test Correlation Framework for Hybrid Electric Vehicle System Model

2011-04-12
2011-01-0881
A hybrid electric vehicle (HEV) system model, which directly simulates vehicle drive cycles with interactions among driver, environment, vehicle hardware and vehicle controls, is a critical CAE tool used through out the product development process to project HEV fuel economy (FE) capabilities. The accuracy of the model is essential and directly influences the HEV hardware designs and technology decisions. This ultimately impacts HEV product content and cost. Therefore, improving HEV system model accuracy and establishing high-level model-test correlation are imperative. This paper presents a Parameter Diagram (P-Diagram) based model-test correlation framework which covers all areas contributing to potential model simulation vs. vehicle test differences. The paper describes each area in detail and the methods of characterizing the influences as well as the correlation metrics.
Technical Paper

Optimum Topology of Structural Foam for Crashworthiness Applications

2004-03-08
2004-01-0467
The use of structural foam in the automotive industry is gaining more acceptance for lighter and stronger body construction. However, its use requires new approaches in order to obtain optimal configurations. Along this line, a computer procedure to optimally design the topology of structural foams under crash loads is presented. The procedure is applied to a front rail subject to frontal crash as a demonstration of the technology. It is concluded that this procedure is a viable approach that enable design engineers to reduce the design time, and weight of new structural foam components.
X