Refine Your Search

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

Toy Model: A Naïve ML Approach to Hydrogen Combustion Anomalies

2024-04-09
2024-01-2608
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine.
Technical Paper

Experimental Evaluation of Methane-Hydrogen Mixtures for Enabling Stable Lean Combustion in Spark-Ignition Engines for Automotive Applications

2022-03-29
2022-01-0471
Economy decarbonization will be one of the main goals for the following years. Research efforts are being focused on reducing carbon-based emissions, by increasing the efficiency of the transport power plants while developing new fuel production methods that reduce the environmental footprint of the refinement process. Consequently, the depletion of conventional fuels derived from petroleum with high carbon content, such as gasoline and diesel, motivated the development of propulsive alternatives for the transportation sector. In this paradigm, methane (CH4) fuel appears as a mid-term solution due to its low carbon content, if compared with traditional fuels, and the low CO2 emissions during its production from renewable sources. However, the intrinsic properties of methane compromise the combustion process, subsequently increasing the emission of CO2.
Technical Paper

Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines

2020-04-14
2020-01-1116
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in-cylinder thermodynamic conditions during the engine operation (pressure, temperature and gas composition) thus conditioning the spark ignition system requirements that will have to evolve to become more reliable and powerful. In this framework, an experimental study on the effect of the key in-cylinder conditions on the ignition system performance has been carried out in a single-cylinder spark-ignition (SI) research engine. The study includes EGR, lambda and energizing time sweeps to assess the behavior of the engine in different operating conditions.
Technical Paper

Effect of Port Injected Ethanol on Combustion Characteristics in a Dual-Fuel Light Duty Diesel Engine

2013-04-08
2013-01-1692
Nowadays, alcoholic fuels gain increased interest as alternative transportation biofuel even in compression ignition engines due to the fact that they contain oxygen and can be produced in a sustainable way. Furthermore, due to their lower CN (Cetane Number) they suit better for premixed combustion applications. Experimental research was conducted on a single cylinder engine provided with modern engine architecture modified for DF (Dual-Fuel) purposes. The authors have investigated the use of ethanol in a DF engine in order to exploit its well-known advantages in premixed combustion mode. The DF approach appears to be a promising solution because it permits flexible control of the premixed fuel fraction regardless from the operating conditions. This improves the exploitation of the ethanol potential according the engine working conditions.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Technical Paper

A Numerical Investigation on Combustion Characteristics with the use of Post Injection in DI Diesel Engines

2010-04-12
2010-01-1260
Post injections are a commonly used strategy to reduce soot and NOx emissions in DI diesel engines. This strategy has been widely explored and studied for several years, however, there are still some aspects of the behavior of the combustion process when it is used that are not completely well known. In this paper a numerical study is carried out in order to better understand the improvement on mixing/combustion phenomena using post injection compared with a single injection case. For this purpose, CFD simulations using commercial code Star CD were performed in realistic engine conditions: the combustion of a single injection case (Pilot + Main injection) was compared with that of post injection case (Pilot + Main + Post) evaluating different post injection timings and comparing the simulated results with previously developed experimental tests which reveal the mentioned improvement on combustion behavior.
Technical Paper

Advanced Injection Strategies to Attain Partially Premixed Combustion Process in a Heavy Duty Diesel Engine

2008-04-14
2008-01-0642
The scope of present study is the analysis of the potential of the highly premixed combustion concept for pollutant control in a HD Diesel engine. Two different approaches to attain this advanced combustion concept are presented in this paper. A narrow angle nozzle configuration is investigated with two different adapted piston bowl geometries. Parametrical tests were performed in a HD single cylinder engine with the aim of appreciating advantages and limitations of these strategies. In each case, results are compared with equivalent conventional single injection strategy. This analysis is focused on NOx-soot emissions and also on engine performance.
Technical Paper

Optimization Towards Low-temperature Combustion in a HSDI Diesel Engine, Using Consecutive Screenings

2007-04-16
2007-01-0911
This paper describes the optimization process of a small single-cylinder research HSDI diesel engine, starting from a conventional combustion towards split-injection low-temperature combustion. Targets for emissions, fuel consumption and combustion noise are defined with the characteristics of low temperature combustion in mind, in other words, high CO, HC and combustion noise but low soot and NOX. In this investigation the targets are defined for a medium-load working modes of a typical small four-cylinder turbo-charged diesel engine, equipped with a particulate trap and oxidation catalyst. They are introduced into an objective target function which is a guide for the optimization process. The statistical optimization procedure used is the method of consecutive screenings. With this methodology, six factors are optimized: mass distribution of the fuel injection pattern, injection pressure, combustion phasing, EGR rate, boost pressure and dwell time between injection events.
Technical Paper

Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine

2004-06-08
2004-01-1842
The scope of this study is the analysis of the influence of boost pressure and injection pressure on combustion process and pollutant emissions. The influence of these parameters is investigated for different engine speeds. Fuel mass was kept constant for all the tests in order to avoid its influence on the analysis. A single cylinder research diesel engine, equipped with a common rail injection system capable of operating up to a maximum pressure of 150 MPa was used. Special attention was paid to NOx, smoke (which are the most important pollutants for legislation) and brake specific fuel consumption.
Technical Paper

Reduction of Pollutant Emissions in a HD Diesel Engine by Adjustment of Injection Parameters, Boost Pressure and EGR

2003-03-03
2003-01-0343
The purpose of the study reported in this paper was to exploit the possibility of adjusting some injection parameters in a diesel engine fitted with a common-rail injection system with the final goal of reducing pollutant emissions. Starting from the original settings, several injection parameters like nozzle hole diameter, injection pressure and injection duration, were adjusted following three different injection strategies, trying to produce some specific fuel spray patterns (spray penetration and cone angle, air entrainment, etc). Additionally, boost pressure was modified, in order to control spray-air interaction, and EGR was introduced to achieve the required NOx reduction. The adjusted injection setting allowed to generate starting values in pollutants emissions very tolerant to EGR, in such a way that the achieved reduction of NOx was not frustrated by an excessive increase in PM emissions.
Technical Paper

Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine

2002-03-04
2002-01-0502
The main objective of the study described in this paper is to explore the potential of different post-injection patterns, with a plain common rail system, for reduction of soot emissions in HD diesel engines. Test have been carried out in a single-cylinder engine at several critical engine operation points from the European Steady state test Cycle (ESC). At these operation points, EGR was introduced to reduce NOx emissions to a given value, and then different post-injection patterns were produced. A parametric study was performed, considering the time between injections and the post-injected fuel mass as the main variables. In every case the total injected fuel mass was kept constant. Aside from the experimental data obtained in the engine tests, a diagnosis model was applied to calculate heat release laws and other parameters depicting the combustion process.
Technical Paper

Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine

2001-03-05
2001-01-0526
The work presented here focuses on the influence of pre- and post-injection on the development of the combustion process and on engine efficiency and pollutant emissions. Tests were performed with a heavy-duty 1.8 litre single-cylinder engine. The study combines performance and emissions measurements together with heat release law analysis. Four representative operating conditions from the European Steady state test Cycle (ESC) have been considered. For each one, the fuel quantity of the pre- and post-injection has been varied between 12 and 20 mg/cc, and the delay of the pre- and post-injection respect to the main injection has been modified too. With a pre-injection strategy it has been possible to reduce the fuel consumption with little soot penalty but causing an increase in NOx levels in most engine modes. The post-injection strategy has been demonstrated to be efficient in soot reduction without NOx emission and fuel consumption penalty.
Technical Paper

Influence of the EGR Rate, Oxygen Concentration and Equivalent Fuel/Air Ratio on the Combustion Behaviour and Pollutant Emissions of a Heavy-Duty Diesel Engine

2000-06-19
2000-01-1813
New future emission regulations for HD Diesel engines in Europe will require a further reduction in NOx and particulate emission levels compared with nowadays values. The work presented here is an analysis of the EGR influence on the DI Diesel combustion process, based upon a parametric study combining cooled EGR with intake pressure increase. The independent variation of EGR rate and intake pressure allows to analyse the influence of the oxygen concentration and the equivalent fuel/air ratio on the combustion process in an independent way. Tests were performed with a 1.8 litre single-cylinder engine. The study combines performance and emissions measurements together with heat release law analysis. Five representative operative conditions from the European Steady - state test Cycle (ESC) have been considered. For each one, EGR rate (from 0 to 30%) and intake pressure (from 0 to 0.03 MPa over nominal pressure) have been varied independently.
X