Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

Door Overbend - Design Synthesis & Analysis

2004-03-08
2004-01-0875
This paper describes the analytical methodology for calculating the overbend needed in the door design to counteract the non-linear seal forces acting on the door header. Overbend in the door design will allow the Original Equipment Manufacturer to achieve competitive above belt flushness and gap dimensional targets at static equilibrium of the door header and weatherstrip. This method combines two analytical models of the weatherstrip and the Door-In-White (DIW) to forecast the design overbend necessary to achieve good fit and finish. These models are: 1) Seal compression-load deflection (CLD) models for each angle of attack of the weatherstrip to the door 2) A nonlinear Finite Element Analysis (FEA) model of the trimmed DIW. Bringing these two elements together to model the static equilibrium deflection, this is developed, into overbend requirements. The design synthesis process to meet the overbend design criteria is demonstrated.
X