Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Analysis of Seat Belt Positioning in Recent NCAP Crash Tests

2013-04-08
2013-01-0460
The objective of this study was to analyze the position of the shoulder belt and adjustable upper anchorage (AUA) relative to the occupant in recent (2011-2012) NHTSA NCAP frontal crash tests. Since 2011, certain changes have been made in the NCAP test procedure. These changes include different Hybrid III occupant sizes as well as variations in the methods for calculating injury risk. One of the most significant changes has to do with thoracic injury risk calculation which was previously associated with chest acceleration and is now based on chest deflection as the measurable parameter. Using the NHTSA NCAP database, as well as other crash test data sources, a comparison was made between the designated upper anchorage position prior to a crash test and the actual position of the belt webbing with respect to the chest deflection measurement potentiometer sub-assembly of the Hybrid III.
Technical Paper

Frontal Crash Testing and Vehicle Safety Designs: A Historical Perspective Based on Crash Test Studies

2010-04-12
2010-01-1024
This study tracks vehicle design changes and frontal crash test performance in NHTSA's NCAP and IIHS consumer information tests since the mid-90s for the Honda Accord and Toyota Camry. The objective was to provide insights into how passenger cars have changed in response to frontal consumer information tests. The history of major design changes for each model was researched and documented. The occupant injury measures from both NHTSA and IIHS were computed and the ratings compiled for several generations of both vehicles. Changes in vehicle crash pulse and occupant injury measures from both NCAP and IIHS tests, and from Canadian low speed rigid barrier tests, when available, were used to assess driver frontal protection for various vehicle generations. Loading of the rigid barrier in NCAP tests was used to evaluate front end stiffness changes over the years.
Technical Paper

A Moving Deformable Barrier with Dynamic Force and Deflection Spatial Measurement Capabilities for Full Scale Tests

2000-03-06
2000-01-0637
This paper describes the design and development of an advanced instrumentation Moving Deformable Barrier (MDB) for use in research crash testing to address vehicle aggressitivity and compatability issues. The instrumented MDB design is an adaptation of the current Federal Motor Vehicle Safety Standard (FMVSS No. 214) MDB design and duplicates as closely as possible its physical and dynamic specifications. Forty-four equally spaced low weight triaxial load cells are placed behind the main body of the aluminum honeycomb structure. In addition, an equal number of string potentiometers are placed in the rear of the cart to measure the honeycomb crush. The triaxial load cells were specially designed to measure forces in both the longitudinal and shear directions. During the initial design stage, the number of load cells, their weight, placement, type, durability and measuring capacity were considered.
X