Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Advanced Urea SCR System Study with a Light Duty Diesel Vehicle

2012-04-16
2012-01-0371
U.S. federal vehicle emission standards effective in 2007 require tight control of NOx and hydrocarbon emissions. For light-duty vehicles, the current standard of Tier 2 Bin 5 is about 0.07 g/mi NOx and 0.09 g/mi NMOG (non-methane organic gases) at 120,000 mi. However, the proposed future standard is 0.03 g/mi for NMOG + NOx (~SULEV30) at 150,000 mi. There is a significant improvement needed in catalyst system efficiencies for diesel vehicles to achieve the future standard, mainly during cold start. In this study, a less than 6000 lbs diesel truck equipped with an advanced urea Selective Catalytic Reduction (SCR) system was used to pursue lower tailpipe emissions with an emphasis on vehicle calibration and catalyst package. The calibration was tuned by optimizing exhaust gas recirculation (EGR) fuel injection and cold start strategy to generate desirable engine-out emissions balanced with reasonable temperatures.
Technical Paper

The Development of Advanced Urea-SCR Systems for Tier 2 Bin 5 and Beyond Diesel Vehicles

2010-04-12
2010-01-1183
An advanced diesel aftertreatment system utilizing Selective Catalytic Reduction (SCR) with urea for lean nitrogen oxides (NOx) control was tested on a 2.7L V6 Land Rover vehicle to demonstrate the capability of achieving Tier 2 Bin 5 and lower emission standards for light-duty trucks. SCR washcoat was applied to a diesel particulate filter (DPF) to perform NOx and particulate reduction simultaneously. Advanced SCR systems employed both traditional SCR catalysts and SCR-coated filters (SCRF) to improve the NOx reduction efficiency. The engine-out NOx level was adjusted by modifying the EGR (Exhaust Gas Recirculation) calibration. Cold start NOx performance was improved by SCR warm-up strategy and urea over injection. This study showed the advanced SCR system could tolerate higher NH₃ storage in the SCR catalyst, resulting in overall higher NOx conversion on the FTP-75 test cycle.
Technical Paper

Development of a New Oxygen Storage Model for SIMTWC

2007-04-16
2007-01-1081
The high conversion efficiency required by the modern three-way catalyst (TWC) is dependent on oxygen storage material functionality and capacity. To successfully model a TWC, it is critical that the oxygen storage function in the catalyst be adequately represented. The original oxygen storage model (a simple “bucket” model) included in one of Ford's TWC models, SIMTWC, was developed for vehicle programs meeting LEV emission standards. Application of SIMTWC to test data from vehicles targeting more stringent emission standards, such as ULEV and PZEV, revealed limitations in the accuracy of the original bucket model. To address these limitations, an improved kinetic model of oxygen storage is being developed. This new model is more kinetically-detailed than the old model.
Technical Paper

Effects of MMT® Fuel Additive on Emission System Components: Comparison of Clear- and MMT®-fueled Escort Vehicles from the Alliance Study

2004-03-08
2004-01-1084
Emission studies were carried out on clear-fueled and MMT®-fueled 100,000-mile Escort vehicles from the Alliance study [SAE 2002-01-2894]. Alliance testing had revealed substantially higher emissions from the MMT-fueled vehicle, and the present study involved swapping the engine cylinder heads, spark plugs, oxygen sensors, and catalysts between the two vehicles to identify the specific components responsible for the emissions increase. Within 90% confidence limits, all of the emissions differences between the MMT- and Clear-vehicles could be accounted for by the selected components. NMHC emission increases were primarily attributed to the effects of the MMT cylinder head and spark plugs on both engine-out and tailpipe emissions. CO emission increases were largely traced to the MMT cylinder head and its effect on tailpipe emissions. NOx emission increases were linked to the MMT catalyst.
Technical Paper

Performance of a Catalyzed Diesel Particulate Filter System During Soot Accumulation and Regeneration

2003-03-03
2003-01-0047
The trapping and regeneration behaviors of a diesel particulate filter (DPF), including particle size, are examined via engine dynamometer testing. The exhaust system consists of two active lean NOx (ALN) catalysts in series followed by a catalyzed DPF. Forced regenerations are accomplished by injecting diesel fuel into the exhaust in front of the ALN catalysts to generate an exotherm sufficient to induce soot oxidation. Results are reported for two diesel fuels, one with 340 ppm sulfur, and the other with 4 ppm sulfur, and as a function of DPF regeneration temperature. The results show the DPF to be very effective at removing particulate matter, >99% efficiency. The <1% of particles that escape trapping exhibit a size distribution very similar to engine out soot. During regeneration, particle emissions remain well below engine out levels for the low sulfur fuel, but exhibit a temporary nucleation mode of about ten times the engine out level for the high sulfur fuel.
X