Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

2010-04-12
2010-01-1122
Effects of six different fuels on low temperature premixed compression ignition (PCI) combustion were experimentally investigated in this paper with a light-duty HSDI engine. The PCI combustion concept reduces NOx and smoke emissions simultaneously by low temperature and premixed combustion, respectively. To achieve low temperature and premixed combustion, the ignition delay is prolonged and the injection duration is shortened. Six fuels were chosen to examine the influence of cetane number (CN) and other fuel properties on low temperature PCI combustion. The fuel selection also included a pure Gas- to-Liquid (GTL) fuel and a blend of base diesel and 20% soy based biodiesel (B20). Fuel effects were studied over a matrix of seven part load points in the low temperature combustion mode. The seven part load points were specified by engine speed (RPM) and brake mean effective pressure (BMEP).
Technical Paper

HCCI Combustion on a Diesel VCR Engine

2008-04-14
2008-01-1187
A variable compression ratio (VCR) technology, that has a new piston-crankshaft mechanism with multi links, has been patented and developed by Nissan for some years (This technology has been detailed in previous SAE paper 2003-01-0921 and 2005-01-1134). This paper will present the use of this VCR technology for Diesel engine. The objective set with the use of VCR for Diesel engine is mainly to reduce as much as possible engine out emission to prepare for long-term, more strict emission standards. Results presented will include the description of the 2l Diesel VCR engine and its VCR mechanism adapted to Diesel constraints. Combustion tests have been performed with the use of HCCI (Homogeneous Charge Compression Ignition) combustion. This technology is still in a research phase in Renault: the adaptation of VCR technology to a Diesel engine consists in the modification of several parts with the addition of lower links, control links and control shaft.
Technical Paper

Diesel Combustion Optimization at Full Load by Combined CFD and Single Cylinder Tests

2004-03-08
2004-01-1402
Thanks to a high specific torque, associated to a low fuel consumption, the market share of the Diesel engine has not stopped increasing during the last decade. Nevertheless, due to the strong emissions regulations to come, the challenge of the Diesel will be to save its advantage in CO2 and to drastically reduce NOx and particulate emissions, whilst offering the save driving pleasure. Hence new concepts of combustion are in development in order to keep NOx emissions as low as possible at an acceptable cost. The homogeneous combustion, by generating a lower pollutant level directly in the combustion chamber, seems to be a very promising way in this direction. Especially, the NADI™ concept, developed by IFP has already shown a high potential in NOx and particulate simultaneous reduction, but up to now its relative low specific power at full load compared to the next generation of conventional Diesel engines could be a major drawback for a global application.
X