Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Book

The Multi Material Lightweight Vehicle (MMLV) Project

2015-06-05
The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety.
Technical Paper

MMLV: Project Overview

2015-04-14
2015-01-0407
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance, occupant safety and utility of the baseline production vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine, resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the MMLV project approach, mass reduction and environmental impact.
Technical Paper

Design for Assembly: An AHP Approach for Automotive Front End Component Design Evaluation

2007-04-16
2007-01-0522
Design for assembly (DFA) is a prominent strategy for manufacturing cost reduction in automotive industries. DFA in automotive component design is a complicated process since several competing targets have to be considered simultaneously in designing various functions and features. It requires specialized design knowledge as well as extensive quantitative analysis, comparison and evaluation. Analytical Hierarchic Process (AHP) is one of the tools that can assist such design and evaluation processes. It has been successfully applied in various processes when multiple competing goals and characteristics are involved. In this paper, we propose the application of AHP for DFA in automotive component design and present a case study involving car front end component design.
Technical Paper

Design for Integrated Assembly and Disassembly of Automotive Products

2006-04-03
2006-01-1423
Manufacturing industries have implemented design for manufacturing and design for assembly guidelines and techniques for many years. These lead to better designed products and lower manufacturing and assembly costs. In recent years, due to environmental and economical reasons, there is a growing interest in developing effective methods for product design considering product disassembly, component remanufacturing and material recovery. As a result of which numerous design guidelines for disassembly and algorithms for disassembly sequence generation are proposed. However, only a handful research articles presented integrated approaches to design for assembly and disassembly. In this paper, an integrated method is proposed to analyze the ease of assembly and disassembly using analytic hierarchic process (AHP) approach.
Technical Paper

Metal Inert Gas (MIG) Welding Process Optimization for 6063-T6 Extruded Material Using OTC/Diahen Equipment

2006-04-03
2006-01-0302
Joining methods for spaceframe architectures using extruded structural elements are getting popular. At present, the development of lightweight vehicles, in particular aluminum intensive vehicles, requires substantial development of manufacturing processes for the joining and assembling. Joining methods, such as electric arc resistance, and laser beam fusion welding together with nonfusion ultrasonic welding rise as possible alternatives for high volume joining of aluminum. In this study, metal inert gas (MIG) welding was used to join heat treatable extruded 6063 T6 aluminum alloys. The purpose of this study was to find optimum MIG welding parameters for joining 6063-T6 extruded aluminum. Also, the MIG welding equipment used in this study is OTC TP 350 DF weld power supply and DR-4000 robotic system. The welding process factors considered were power input (voltage, current, and torch speed), pulse frequency, gas flow rate, torch angle and arc intensity.
Technical Paper

Metal Inert Gas (MIG) Welding Process Optimization for Double Lap Joint Configuration of Aluminum 5754 Sheet Material Using OTC/Daihen Equipment

2006-04-03
2006-01-0301
Aluminum alloys are becoming more lucrative in automotive structural applications. In recent automotive history, 5xxx and 6xxx aluminum alloys are being used in various structural applications. Various joining methods are also popular for joining 5xxx, and 6xxx series alloys. In this study, gas metal are welding (GMAW) also referred as metal inert gas (MIG) welding is used to join a non-heat-treatable alloy. The objective of this paper is to develop optimum weld process factors for double lap joint configuration for non-heat-treatable 5754 aluminum alloy. Ultimately, these optimum weld factor settings (also referred as weld schedules) will be used in the plant level for joining 5754 alloy materials. Also, the MIG welding equipment used in this study is OTC TP 350 DF weld power supply and DR-4000 robotic system. The weld factors selected for this study to understand the influence on lap shear load failure are power input (torch speed, voltage, current, wire feed), and gas flow rate.
Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
X