Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Integrating In-Wheel Motors into Vehicles - Real-World Experiences

2012-04-16
2012-01-1037
Compact direct drive in-wheel motors with integrated inverters, control and brakes offer a number of distinct advantages compared to conventional electric drive systems. The most obvious being that the drivetrain is now packaged within the wheel freeing up space elsewhere, in addition many driveline components and their associated losses are eliminated and the vehicle efficiency, response and handling can be improved. In new vehicle applications this allows complete freedom for designers to optimize the vehicle layout, have more usable space inside the vehicle body and enables revolutionary vehicle concepts (which will become more important as road space becomes scarce and taxation measures migrate towards vehicle size). In retrofit applications the compact package allows an electric drive to be added to any existing vehicle without requiring any significant disruption to the vehicle platform to keep integration costs down.
Technical Paper

Optimal Boost Control for an Electrical Supercharging Application

2004-03-08
2004-01-0523
Electrical on demand supercharging provides an internal combustion engine with the facility to increase its volumetric efficiency without being subject to the mechanical constraints associated with a conventional pressure charging device. This enables improvement in fuel economy through engine downsizing with the added ability to enhance torque. The Visteon Torque Enhancement System (VTES) is a fully integrated air management system, at the heart of which is an electronically controlled, electrically powered supercharger. Based on the driver demand, the supercharger responds by rotating a compressor at a speed which pressurizes the intake air to the desired level. The control system associated with an electrical boosting device (EBD) considers the engine and electrical motor torque requirements for providing the actuator with an appropriate compressor set-point. Optimal tracking of the set-point requires inclusion of physical limits of the actuator for the supercharger operation.
X