Refine Your Search

Topic

Search Results

Author:
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Numerical Study on the Influence of Convergent-Divergent Nozzle Structures on the In-Nozzle Flow and Jet Breakup Based on the OpenFOAM

2020-04-14
2020-01-1156
The non-conventional diesel nozzles have attracted more and more attention for their ability to promote jet breakup. In the present study, the internal nozzle flow and jet breakup relying on the convergent-divergent nozzle are investigated by combining the cavitation model and LES model with Multi-Fluid-Quasi-VOF model based on the OpenFOAM code. This is a novel method for which the interphase forces caused by the relative velocity of gas and liquid can be taken into account while sharpening the gas-liquid interface, which is able to accurately present the evolution processes of cavitation and jet breakup. Primarily, the numerical model was verified by the mass flow rate, spray momentum flux, discharge coefficient and effective jet velocity of the prototype Spray D nozzle from the literature.
Technical Paper

Effect of Turbulence-Chemistry Interaction on Spray Combustion: A Large Eddy Simulation Study

2019-04-02
2019-01-0203
Although turbulence plays a critical role in engines operated within low temperature combustion (LTC) regime, its interaction with chemistry on auto-ignition at low-ambient-temperature and lean-oxygen conditions remains inadequately understood. Therefore, it is worthwhile taking turbulence-chemistry interaction (TCI) into consideration in LTC engine simulation by employing advanced combustion models. In the present study, large eddy simulation (LES) coupled with linear eddy model (LEM) is performed to simulate the ignition process in n-heptane spray under engine-relevant conditions, known as Spray H. With LES, more details about unsteady spray flame could be captured compared to Reynolds-averaged Navier-Stokes equations (RANS). With LEM approach, both scalar fluctuation and turbulent mixing on sub-grid level are captured, accounting for the TCI. A skeletal mechanism is adopted in this numerical simulation, including 41 species and 124 reactions.
Technical Paper

Computational Optimization of Syngas/Diesel RCCI Combustion at Low Load in Different Engine Size

2019-04-02
2019-01-0573
Syngas is considered to be a promising alternative fuel for the dual-fuel reactivity controlled compression ignition (RCCI) engine to reduce the fuel consumption and emissions. However, the optimal syngas compositions and fuel supply strategies in RCCI combustion are significantly affected by engine configurations, which have not been investigated yet. In this study, by integrating the KIVA-3V code and the non-dominated sort genetic algorithm II (NSGA-II), the optimizations for a 0.477 L single-cylinder engine with shallow/wide piston bowl (Engine A) and a 1.325 L single-cylinder engine with conventional omega-type piston (Engine B) under the syngas/diesel RCCI combustion were performed. The optimized operating parameters include the fuel-supply strategies, syngas compositions, and intake conditions. The results indicate that the fuel-supply strategy is flexible in Engine A due to the shallow/wide piston bowl and the relatively small cylinder bore.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Development of a Reduced Chemical Mechanism for Dimethyl Ether (DME) Using a Decoupling Methodology

2017-10-08
2017-01-2191
Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
Technical Paper

Similarity Analysis of the Chemical Kinetic Mechanism on the Ignition Delay in Shock Tubes and Homogeneous Charge Compression Ignition (HCCI) Engines

2017-10-08
2017-01-2260
The chemical kinetic mechanism determines the ignition timing of homogeneous charge compression ignition (HCCI) engines. The correlation of the ignition delay in shock tubes and HCCI engines under different operating conditions was studied with a reduced mechanism of the primary reference fuel (PRF) composing of n-heptane and iso-octane. According to the similarity analysis of the sensitivity coefficient, the operating conditions which affect the similarity factor are recognized. The results indicate that, under the negative temperature coefficient (NTC) region of the ignition delay in shock tubes, the weight of each reaction on the ignition delay in shock tubes is similar to that in HCCI engines. The ignition delay time in HCCI engines is defined as the period from the time of start of heat release (SHR) with the HRR greater than zero to CA10. At the high equivalence ratios in shock tubes, the similarity factor at the low ambient temperatures is small.
Journal Article

Numerical Study on Flash Boiling Spray of Multi-Hole Injector

2017-03-28
2017-01-0841
Flash boiling spray is effective in improving the atomization and evaporation characteristics for gasoline direct injection engines. However, for a multi-hole injector the morphology structure of spray has an obvious change with the fuel temperature increasing or the ambient pressure decreasing, which influences the process of mixture formation and flame propagation. Specially, the spray collapses with both long penetration and a narrow spray angle above certain high superheat degree, which deteriorates air/fuel mixing and hence increases emissions. It is not desired for engine applications while the mechanism of spray structure transformation for multi-hole injector still remains unclear. In the present study, a systematic flash boiling spray model for multi-hole injector is built to investigate the flash boiling spray of multi-hole injector.
Technical Paper

Experimental and Numerical Study of the Liquid Film Separation and Atomization at Expanding Corners

2017-03-28
2017-01-0856
The phenomenon of a thin liquid film separation and atomization at expanding corners during the spray/wall interaction is usually encountered in premixed charge compression ignition (PCCI) engines. However, detailed information about the film separation is very limited, especially under high injection pressure conditions. In this study, experimental study was conducted to investigate the effects of injection pressure and impingement distance on the evolutions of the impinging spray and the adhered film at simplified geometries with an expanding corner by employing a high-speed camera. In addition, an improved hybrid film separation and atomization model was developed, which includes the sub-models of film separation criterion, film separation mass ratio, and the film atomization model based on the Rayleigh-Taylor instability theory.
Technical Paper

Comparing the Exergy Destruction of Methanol and Gasoline in Reactivity Controlled Compression Ignition (RCCI) Engine

2017-03-28
2017-01-0758
Multi-dimensional models coupled with a reduced chemical mechanism were used to investigate the effect of fuel on exergy destruction fraction and sources in a reactivity controlled compression ignition (RCCI) engine. The exergy destruction due to chemical reaction (Deschem) makes the largest contribution to the total exergy destruction. Different from the obvious low temperature heat release (LTHR) behavior in gasoline/diesel RCCI, methanol has a negative effect on the LTHR of diesel, so the exergy destruction accumulation from LTHR to high temperature heat release (HTHR) can be avoided in methanol/diesel RCCI, contributing to the reduction of Deschem. Moreover, the combustion temperature in methanol/diesel RCCI is higher compared to gasoline/diesel RCCI, which is also beneficial to the lower exergy destruction fraction. Therefore, the exergy destruction of methanol/diesel RCCI is lower than that of gasoline/diesel RCCI at the same combustion phasing.
Technical Paper

A Numerical Investigation of the Vaporization Process of Lubricating Oil Droplets under Gas Engine Conditions

2015-09-01
2015-01-1949
The abnormal combustion resulted by the auto-ignition of lubricating oil is a great challenge to the development of Otto-cycle gas engines. In order to investigate the mechanism of lubricating oil droplet vaporization process, a crucial sub-process of auto-ignition process, a new multi-component vaporization model was constructed for high temperature and pressure, and forced gas flow conditions as encountered in practical gas engines. The vaporization model has been conducted with a multi-diffusion sub-model considering the multi-component diffusivity coefficients in the gas phase. The radiation heat flux caused by ambient gas was taken into account in high temperature conditions, and a real gas equation of state was used for high pressure conditions. A correction for mass vaporization rate was used for forced gas flow conditions. Extensive verifications have been realized, and considerable results have been achieved.
Technical Paper

The Optimization of Intake Port using Genetic Algorithm and Artificial Neural Network for Gasoline Engines

2015-04-14
2015-01-1353
The flow performance of intake port significantly affects engine output power, fuel economy, and exhaust emissions in gasoline engines. Thus, optimal intake port geometry is desired in gasoline engines. To optimize the flow performance of intake port, a new optimization method combining genetic algorithm (GA) and artificial neural network (ANN) was proposed. First, an automatic system for generating the geometry of the tangential intake port was constructed to create various port geometries through inputting the 18 pre-defined structural parameters. Then, the effects of four critical structural parameters were investigated through numerical simulation. On the basis of the computational results, an ANN was used to model the flow performance of the intake port, and a genetic algorithm was simultaneously employed to optimize the flow performance by optimizing the four important structural parameters. Finally, the optimization results were verified through numerical simulation.
Technical Paper

Updated Prediction of the Physical Properties Needed for Modeling the Spray Behavior of Biodiesel Fuel

2014-10-13
2014-01-2750
It has been recognized that density, viscosity, surface tension, and volatility of liquid fuel are of great importance on the atomization and vaporization characteristics of biodiesel spray. This paper presents a comprehensive physical property prediction of biodiesel fuel for spray modeling with most recently developed property prediction models. The temperature-dependent properties of a soy methyl ester (SME) biodiesel were well predicted by the updated prediction methods. Then, the physical properties of the SME biodiesel were added into the KIVA-3V fuel library. By using the well predicted fuel properties, the spray behaviors of SME were successfully simulated by the KIVA-3V code under late-cycle post-injection, conventional diesel injection, and early-injection engine-relevant conditions. The simulation results agree reasonably well with the available experimental liquid penetrations under conditions of various ambient densities and temperatures.
Technical Paper

Modeling the Spray Behaviors of Fatty Acid Methyl Esters in Biodiesel Fuels under Engine-Relevant Conditions

2014-10-13
2014-01-2736
Spray behaviors of pure biodiesel and its blend with conventional diesel have been substantially studied in the last decade. However, the studies on the spray behaviors of pure fatty acid methyl esters (FAMEs) are scarce. The primary components of most biodiesel fuels are methyl palmitate (C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2) and methyl linolenate (C18:3), and methyl laurate (C12:0) is also the dominant component of some biodiesels. In this study, the spray behaviors of the aforementioned six FAMEs in biodiesel fuels under engine-relevant conditions were numerically studied using the KIVA-3V code. The physical properties needed for spray modeling were predicted with most recently developed property prediction models and added into the fuel library of KIVA-3V. The transient behaviors of liquid penetrations and vaporization characteristics of these FAMEs were numerically studied under various engine-relevant conditions.
Technical Paper

Numerical methods of improving computation efficiency on diesel spray and combustion using large eddy simulation in KIVA3V code

2014-04-01
2014-01-1149
Unlike RANS method, LES method needs more time and much more grids to accurately simulate the spray process. In KIVA, spray process was modeled by Lagrangain-drop and Eulerian-fluid method. The coarse grid can cause errors in predicting the droplet-gas relative velocity, so for reducing grid dependency due to the relative velocity effects, an improved spray model based on a gas-jet theory is used in this work and in order to validate the model seven different size grids were used. In this work, the local dense grid was used to reduce the computation cost and obtain accurate results that also were compared with entire dense grid. Another method to improve computation efficiency is the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme that was implemented into KIVA3V-LES code to calculate the momentum convective term and reduce numerical errors.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

2013-04-08
2013-01-1111
Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Technical Paper

Influences of subgrid turbulent kinetic energy and turbulent dispersion on the characteristics of fuel spray

2011-08-30
2011-01-1839
A large eddy simulation approach and different breakup models are used to analyze fuel injection and atomization processes in a constant volume combustion bomb. The study is focused on the influences of the subgrid turbulent kinetic energy, especially the source term induced by the fuel spray, on the droplet movement and spray characteristics. Furthermore, the influence of different subgrid scale (SGS) models, including the constant coefficient and dynamic Smagorinsky models, WALE model and the K-equation turbulent energy transport model, on fuel sprays and the turbulent dispersion of droplets are examined. Factors affecting the fuel spray are discussed based on numerical computations for various operating conditions and are compared with experimental data.
Technical Paper

An Investigation of Multiple-Injection Strategy in a Diesel PCCI Combustion Engine

2010-04-12
2010-01-1134
Multiple-injection strategy for Premixed Charge Compression Ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code [ 1 ] coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, included spray angles, injecting velocity, and the combined effects of injection parameters and EGR rate and boost pressure were examined. The mixing process and formations of soot emission and NO x were investigated as the main concern of the research. The results show that the fuel splitting proportion and the injection timing significantly impacted the combustion and emissions due to the considerable changes of the mixing process and fuel distribution in cylinder. The soot emission and unburned HC (UHC) were affected by included spray angles since the massive influences of the fuel distribution resulted from the change in spray targeting point on piston bowl.
Technical Paper

Prediction of the Operating Range for a HCCI Engine Based on a Multi-zone Model

2008-06-23
2008-01-1663
A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ringing intensity), partial burn (presented by combustion efficiency) and cycle-to-cycle variations (presented by the sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with iso-octane was simulated, and it was found that the knock and cycle-to-cycle variations predicted by this model showed a satisfactory agreement with measurements under different initial temperatures and equivalence ratios, and the operating range was well reproduced by the model. Furthermore, the model was applied to develop the operating range for different engine speeds by changing initial temperature and equivalence ratio. Finally, the potential to expand the operating range of HCCI engines through two strategies, i.e. variable compression ratio and boost, were investigated.
X