Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Journal Article

A Study of Drying-Up Friction and Noise of Automotive Accessory Belt

2013-04-08
2013-01-1701
Multiple-ribbed V belts have been widely used in automotive accessory drive systems to transmit power from crankshaft to power steering pump, alternator, and air conditioning (A/C) compressor. Overload under severe environmental conditions can lead to excessive slippage in the belt pulley interface in poorly designed accessory drive systems. This can lead to undesirable noise that increases warranty cost substantially. The mechanisms of this tribology phenomenon, noise features and system response are of utmost interest to the accessory drive system engineers. As accessory belt systems are usually used in ambient condition, the presence of water or moisture on belt is unavoidable under rainy or highly humid conditions. It has been found that the wet friction with negative coefficient of friction (cof)-velocity slope can lead to self-excited vibrations and squeal noise.
Book

Vehicle Noise, Vibration, and Sound Quality

2012-04-04
This book gives readers a working knowledge of vehicle vibration, noise, and sound quality. The knowledge it imparts can be applied to analyze real-world problems and devise solutions that reduce vibration, control noise, and improve sound quality in all vehicles—ground, aerospace, rail, and marine. Also described and illustrated are fundamental principles, analytical formulations, design approaches, and testing techniques. Whole vehicle systems are discussed, as are individual components. The latest measurement and computation tools are presented to help readers with vehicle noise, vibration, and sound quality issues. The book opens with a presentation of the fundamentals of vibrations and basic acoustic concepts, as well as how to analyze, test, and control noise and vibrations. The next 2 chapters delve into noise and vibrations that emanate from powertrains, bodies, and chassis.
Technical Paper

Study of Noise of Accessory Belt under Cold Condition

2011-04-12
2011-01-0929
This paper presents an experimental study of automotive V-ribbed belt slip noise under cold condition. In this study, a set of experiments was conducted to investigate the properties of the belt noise and friction using a self developed rig. The belt friction under cold condition is found to have higher value than that in room condition. The belt noise under cold condition is found to have much higher squeal frequency than that in room condition. This study is expected to provide accessory drive designers some fundamental understanding of belt startup noise under cold conditions.
Book

Road Vehicle Dynamics and Problems and Solutions: Set

2010-04-28
This set combines the book Road Vehicle Dynamics with its corresponding workbook companion, Road Vehicle Dynamics: Problems and Solutions. Road Vehicle Dynamics provides a detailed overview of the dynamics of road vehicle systems, giving readers an understanding of how physical laws, human factor considerations, and design choices affect ride, handling, braking, acceleration, and vehicle safety. Chapters cover analysis of dynamic systems, tire dynamics, ride dynamics, vehicle rollover analysis, handling dynamics, braking, acceleration, total vehicle dynamics, and accident reconstruction. The workbook will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. It presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques.
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
Technical Paper

Time Belt Dynamics and Noise Study

2010-04-12
2010-01-0902
This paper studies the dynamics and noise of timing belt. A comprehensive theoretical contact dynamics model for belt tooth-sprocket tooth pair is developed. The general belt dynamics model in conjunction with the contact model is used to quantify the impact-sliding process of belt tooth. The effect of tooth meshing process is illustrated which results in the vibrations of belt span and tooth vibrations. The structural borne noise consists of structural impact portion and friction-induced portion. The relationship between system parameters and noise is quantified. The air borne noise due to air-pumping is investigated based on Lighthill's equation. A comprehensive model is developed and the spectrum signatures of the air-pumping noise are illustrated.
Technical Paper

Belt Wet Friction and Noise Study

2009-06-15
2009-01-1979
Serpentine belt system has been widely used to drive automotive accessories like power steering pump, alternator, and A/C compressor from a crankshaft pulley. Overload under severe conditions can lead to excessive slippage in the belt pulley interface in poorly designed accessory systems. This can lead to undesirable noise that increases warranty cost substantially. The mechanisms and data of these tribology performance, noise features and system response are of utmost interest to the accessory drive designers. As accessories belt systems are usually used in ambient condition, the presence of water on belt is unavoidable under the raining weather conditions. The presence of water in interface induces larger slippage as the water film in interface changes the friction mechanisms in rubber belt-pulley interface from coulomb friction to friction with mixed lubrication that has negative slope of coefficient of friction (cof) - velocity.
Technical Paper

Flow Excited Noise Analysis of Exhaust

2005-05-16
2005-01-2352
This paper introduces a cumulative effort on the phenomenon of exhaust flow exited noise. The mechanisms of engine combustion noise via the exhaust system and flow excited noise are analyzed. Engine combustion noise contributes most to tailpipe noise at lower engine speed while flow excited noise dominates the tailpipe noise at high engine speed. WAVE model, a one dimension CFD and Acoustics model, is used to distinguish the engine combustion noise and flow excited noise. Both CAE and tests based results are used to draw conclusions. The influence of single system and quasi-dual system on the tailpipe noise is compared with each other. The paper analyzes the balance of different diameter pipes to achieve the desired sound at different rpm range. The evaluation balance between interior sound and tailpipe noise is described.
Technical Paper

A Comparison of Crash Patterns in Heavy Trucks with and Without Collision Warning System Technology

2004-10-26
2004-01-2651
Collision warning systems (CWS) are a relatively new technology to reduce or mitigate motor vehicle rear-end and side impact collisions. This study compared available police-reported crash experiences of 6,143 CWS-equipped heavy trucks with the experiences of 383,058 heavy trucks without CWS. Data were from the Motor Carrier Management Information System (2000-2002). Results suggest that CWS-equipped trucks had a significantly lower proportion of crashes involving other moving vehicles and a significantly lower proportion of multiple vehicle crashes compared to trucks without CWS, (40% vs. 49%, p<0.0001; 62% vs. 67%, p<0.004 respectively). These changes are the first crash-data based evidence that supports the design effect of CWS. However, more studies are needed to determine the specific impacts of CWS on heavy truck crashes.
Technical Paper

Nonlinear Model Validation for Automotive Seat Cushion-Human Body Combined Structure

2004-03-08
2004-01-0372
In this paper, a nonlinear dynamic model for automotive cushion-human body combined structure is developed based on a nonlinear seat cushion model and a linear ISO human body model. Automotive seat cushions have shown to exhibit nonlinear characteristics. The nonlinear seat cushion model includes nonlinear stiffness and nonlinear damping terms. This model is verified by a series of tests conducted on sports car and luxury car seats. The transfer functions from the tests for human body sitting on an automotive seat changes with the vibration platform input magnitudes. This indicates that the combined structure possesses nonlinear characteristics. The nonlinear model is validated by the transfer functions from the test. The paper discusses the influence of the parameters of the nonlinear structure on the design of seat and assessment of human body comfort.
Technical Paper

Nonlinear Model Identification and Procedure for Automotive Seat Cushion Structure

2004-03-08
2004-01-0378
The paper presents a procedure for nonlinear model identification of automotive seat cushion structure. In this paper, two nonlinear models are presented. Tests show that the automotive seat cushion structure is a nonlinear system. The transfer functions obtained from the test data between the seat butt and the seat track show that the magnitude and frequency shift will be smaller as the input is increased. The models predict the transfer functions having the same trend as the results from the tests. The models are quite useful for the analysis other car structures and also provide guidance in the design of seat cushions.
X