Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Additional Comparison of Ice Shapes on Full-Chord and Truncated Swept Wing Models from January 2022

2023-06-15
2023-01-1387
A research program was conducted to evaluate the effectiveness of icing tunnel hybrid model design. A hybrid design is where the full-scale leading edge of a wing section is maintained only to a certain percentage of the local chord, while the aft section of the model is redesigned into a shortened or truncated planform. An initial study was conducted in 2020 where the ice shape geometries on a full-chord length version of the swept CRM65 wing model were compared to those from the hybrid version of CRM65 that were obtained in the NASA Icing Research Tunnel in 2015. The results were reported in a 2021 paper. For most test conditions, the overall size and shape of the ice shapes compared well. However, the ice shapes from the full-chord model were generally slightly smaller than those from the hybrid model.
Technical Paper

Icing Physics Studies Using the 3D SIDRM Test Article: Aerodynamic and Supercooled Liquid Icing Analysis

2023-06-15
2023-01-1399
In-flight icing is an important safety issue and is a factor that affects aircraft design and performance. Newer regulations are driving a need for improvements in airframe and engine icing simulation capability. Experimental data is required for development of icing physics models and simulation validation. To that end, this paper presents the analysis of the supercooled liquid icing data subset from tests conducted in 2022 at the NASA Icing Research Tunnel that studied both supercooled water and ice-crystal icing. The test article that was utilized replicated 3D geometrical features of an inter-compressor duct and strut region of a turbofan engine. The surfaces of the Simulated Inter-compressor Duct Research Model (SIDRM) can be heated to simulate the warm surfaces of the turbofan inter-compressor duct.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models

2011-06-13
2011-38-0081
Icing scaling tests in the NASA Glenn Icing Research Tunnel were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., Β₀) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knots and MVD of 44 and 93 μm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0° angle of attach (AoA) and 45° sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0.
X