Refine Your Search

Search Results

Author:
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Journal Article

A Study on NOx Emission Characteristics When Using Biomass-derived Diesel Alternative Fuels

2012-04-16
2012-01-1316
Utilization of biofuels to vehicles is attracting attention globally from viewpoints of preventing global warming, effectively utilizing the resources, and achieving the local invigoration. Representative examples are bioethanol and biodiesel. This study highlights biodiesel and hydrotreated vegetable oil (HVO) in view of reducing greenhouse gas emission from heavy-duty diesel vehicles. Biodiesel is FAME obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. As already reported, FAME has fuel properties different from conventional diesel fuel, resulting in about 10% increase in NOx emission [1],[2],[3]. Suppression of such increase in the NOx emission during operating with biodiesel requires adjustment of the combustion control technology, such as fuel injection control and EGR, to the use of biodiesel.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Technical Paper

Exhaust Emission Characteristics of Commercial Vehicles Fuelled with Biodiesel

2010-10-25
2010-01-2276
The application of biodiesel as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO₂ emission, because biodiesel is produced from renewable biomass resources. In Japan, neat biodiesel derived from waste cooking oil has often been applied to commercial vehicles. However, it is possible that the difference of fuel properties between conventional diesel fuel and biodiesel causes the problems on exhaust emission characteristics of diesel engine. Therefore, it is necessary to clarify the effect of biodiesel fuelling on exhaust emissions from commercial vehicles. Light-duty garbage trucks and heavy-duty diesel buses which were actually fueled with biodiesel in Kyoto, Japan, were used for test vehicles in this study. The exhaust emissions from these vehicles during JE05 mode tests were compared between biodiesel derived from waste cooking oil and conventional diesel fuel.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 2nd report: Analysis of combustion characteristics for the mixed fuels

2001-03-05
2001-01-0202
In the present study, we have proposed a novel fuel design concept in order to achieve low emissions and combustion control in engine systems. The fuel design concept is based on the combustion control that could be realized by using a mixed fuel with a lower boiling point fuel, such as gasoline or gaseous fuel components and a higher boiling point fuel, such as gas oil or fuel oil components. According to the fuel design concept proposed in this work, the characteristics of vaporization during mixture formation process as well as of combustion can be reasonably improved due to the formation of two-phase region. The heat release analysis was conducted to compare the temporal history of heat release for both a mixed fuel and a single component fuel that has the same transport properties of mixed fuels. In addition, the two-color method, which simultaneously allows the measurements of temperature distribution and soot concentration, is applied to the combustion field for mixed fuels.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

2004-06-08
2004-01-1845
The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 3rd Report: Analysis of Spray Characteristics for Mixed Fuels

2002-03-04
2002-01-0220
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In the fuel design concept, the fuel mixed with high volatility fuel (gasoline or gaseous fuel components) and low volatility fuel (gas oil or fuel oil components) are used to improve the spray characteristics using flash boiling effect. The authors has addressed the combustion processes of the mixed fuel with n-pentane and n-tridecane (n-pentane/n-tridecane) using heat release analysis, shadow photography and two-color method in rapid compression and expansion machine (RCEM). It has been reported the spray characteristics of single component fuel, but that of multicomponent fuels is almost unknown. In the present study, it is reported the results of spray experiments for mixed fuels conducted in RCEM. The liquid and vapor distributions of n-pentane/n-tridecane were analyzed by using Mie scattering and planar laser-induced fluorescence (PLIF).
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
X