Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine

2005-10-24
2005-01-3776
SunDiesel fuel is a biomass-to-liquid (BTL) fuel that may have certain attributes different from conventional diesel. In this investigation, 100% SunDiesel was tested both in a Mercedes A-Class (MY1999) diesel vehicle and a single-cylinder heavy-duty compression-ignition direct-injection engine. The SunDiesel's emissions and fuel consumption were significantly better than conventional diesel fuel, especially in nitrogen oxides (NOx) reduction. In the vehicle U.S. Environmental Protection Agency (EPA), Federal Test Procedure 75 (FTP-75), and New European Drive Cycle (NEDC) tests, the carbon dioxide emissions on a mile basis (g/mile) from SunDiesel fuel were almost 10% lower than the conventional diesel fuel. Similarly, in the single-cylinder engine steady-state tests, the reductions in brake specific NOx, carbon monoxide (CO), and particulate matter (PM) are equally significant. Combustion analysis, though not conclusive, indicates that there are differences deserving further research.
X