Refine Your Search

Search Results

Author:
Viewing 1 to 16 of 16
Technical Paper

The Study of the Fundamental Characteristics of Tumble in a Spark-Ignition Engine via Numerical Analysis

2021-04-06
2021-01-0408
A spark-ignition engine commonly induces tumble flow because it generates high turbulence, which is a crucial factor in determining the flame propagation speed. Since tumble affects not only the flame propagation speed but also the various in-cylinder phenomena, it predominantly determines the performance of the engine. In that sense, many studies have been conducted to investigate tumble. Although various studies have revealed the characteristics of tumble numerically and experimentally, there has been no research to identify the physical mechanisms of these characteristics. Although some studies specified the mechanisms from an angular momentum perspective, the theory was insufficient to explain the entire phenomena of tumble. Hence, this study attempts to comprehend the fundamental causes of tumble phenomena such as ‘spinning up’ and ‘vortex breakdown’ from the perspective of kinetic energy.
Technical Paper

An Experimental Study on a Six-Stroke Gasoline Homogeneous Charge Compression Ignition (HCCI) Engine with Continuously Variable Valve Duration (CVVD)

2021-04-06
2021-01-0512
An experimental study was conducted on a multi-cylinder engine to understand the feasibility of a six-stroke homogeneous charge compression ignition (HCCI) operation under stoichiometric conditions. State-of-the-art technologies such as continuously variable valve duration (CVVD) and high-pressure gasoline direct injection (GDI) were experimentally exploited to increase the degree of freedom of engine control. The motivation of six-stroke HCCI combustion is to remedy the load limitation and the cyclic variation in four-stroke HCCI combustion with two additional strokes: compression and expansion strokes. The six-stroke HCCI combustion occurs in the following order. First, hot residual gas is trapped by applying negative valve overlap (NVO). Next, fresh air enters, fuel is injected, and lean HCCI combustion occurs in the 1st power stroke (PS). Subsequently, additional fuel is injected, and the 2nd combustion occurs with the remaining oxygen in the two additional strokes.
Technical Paper

Development of a Predictive Model for Knock Intensity in a Spark-Ignition Engine with Gasoline-Ethanol-nButanol Blend Fuel by Using Rapid Compression Machine

2019-09-09
2019-24-0125
In this study, we developed a predictive model for knock intensity in spark-ignition (SI) engine with gasoline-ethanol-nbutanol (GEnB) blend fuel, which is being considered as an alternative fuel for conventional gasoline in South Korea, to understand the potential improvement of engine performance with the introduction of GEnB blend fuel. First, the ignition delay of the stoichiometric mixture of GEnB blend fuel and air was measured on a pressure of 10-30 bar and a temperature of 721-831 K by using rapid compression machine (RCM). Then, we derived the empirical correlation of the ignition delay with which the Livengood-Wu integration along pressure-temperature profile in RCM gives the best prediction for the start of combustion. The ignition delay correlation was applied to 0-D two-zone SI engine model, and we predicted the knocking intensity of GEnB blend fuels by using Livengood-Wu integration and Bougrine’s knocking intensity model.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Predicting the Influences of Intake Port Geometry on the Tumble Generation and Turbulence Characteristics by Zero-Dimensional Spark Ignition Engine Model

2018-09-10
2018-01-1660
The flame propagation characteristic is one of the greatest factor that determines the performance of spark ignition (SI) engines. The in-cylinder flow dynamics is very significant in terms of flame propagation because of its direct influence on the flame shape, turbulent flame speed, and the ignition quality. A number of different techniques are available to optimize the in-cylinder flow and maximize the utilization of turbulence for faster combustion, and tumble enhancement by intake port geometry is one of them. It requires excessive computational expenses to evaluate multiple designs under wide range of operating conditions by 3D-CFD, therefore, a low-dimensional model would be more competitive in such design optimization process. This work suggests a new modification approach for typical 0D turbulence model to take account for the tumble generation during the intake process as well as the turbulence characteristics associated with it.
Journal Article

Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine

2018-04-03
2018-01-0212
As fuel injection strategies in spark-ignition (SI) engines have been diversified, inhomogeneous mixing of the fuel-air mixture can occur to varying extents during mixture preparation. In this study, we analyzed the effect of inhomogeneous mixing on the knocking characteristics of iso-octane and air mixture under a standardized fuel testing condition for research octane number (RON), based on ASTM D2699. For this purpose, we assumed that both lean spots and rich spots existed in unburned gas during compression stroke and flame propagation and calculated the thermodynamic state of the spots by using an in-house multi-zone, zero-dimensional SI engine model. Then, the ignition delay was measured over the derived thermodynamic profiles by using rapid compression machine (RCM), and we calculated ξ, the ratio of sound speed to auto-ignition propagation speed, based on Zel’dovich and Bradley’s ξ − ε theory to estimate knock intensity.
Technical Paper

Study on Auto-Ignition Characteristics of High Pressure Methane Jet for Compression Ignition Engine Application

2018-04-03
2018-01-0274
Natural gas has been considered as an alternative fuel for a heavy duty diesel engine with its lower pollutant and carbon dioxide emissions than its counterpart. However, due to the high auto-ignition temperature of methane, this alternate fuel has been mainly used in spark-ignited engine with relatively lower compression ratio, losing full potential of achieving high efficiency. To overcome these limitations, high-pressure direct injection of the natural gas in a compression ignition engine has been proposed, and there have been several attempts to understand physical behaviors and ignition of methane jet. In this study, auto-ignition characteristics of high-pressure methane jet were investigated both through the experiment and the multi-zone modeling to suggest the applicability to such engine.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
Technical Paper

Knock Prediction of Two-Stage Ignition Fuels with Modified Livengood-Wu Integration Model by Cool Flame Elimination Method

2016-10-17
2016-01-2294
Livengood-Wu integration model is acknowledged as a relatively simple but fairly accurate autoignition prediction method which has been widely recognized as a methodology predicting knock occurrence of a spark-ignition (SI) engine over years. Fundamental idea of the model is that the chemical reactivity of fuel under a certain thermodynamic test condition can be represented by inverse of the acquired ignition delay. However, recent studies show that the predictability of the model seems to deteriorate if the tested fuel exhibits negative temperature coefficient (NTC) behavior which is primarily caused by two-stage ignition characteristics. It is convincing that the cool flame exothermicity during the first ignition stage is a major cause that limits the prediction capability of the integration model, therefore a new ignition delay concept based on cool flame elimination is introduced in order to minimize the thermal effect of the cool flame.
Technical Paper

Study on the Correlation between the Heat Release Rate and Vibrations from a Diesel Engine Block

2015-04-14
2015-01-1673
In this study, a correlation between the maximum heat release rate and vibrations from a diesel engine block was derived, and a methodology to determine the maximum heat release rate is presented. To investigate and analyze the correlation, an engine test and an actual road vehicle test were performed using a 1.6-L diesel engine. By varying the engine speed, load and main injection timing, the vibration signals from the engine block were measured and analyzed using a continuous wavelet transform (CWT). The results show that the maximum heat release rate has a strong correlation with the magnitude of the vibrations. A specific bandwidth, the vibration signals between 0.3∼1.5 kHz, was affected by the variation in the heat release rate. The vibrations excited by combustion lasted over 50 CAD; however, the signals during the period of 35 CAD after the start of injection had a dominant effect on the maximum heat release rate.
Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

The Development of Real-time NOx Estimation Model and its Application

2013-04-08
2013-01-0243
To meet the stringent emission regulations on diesel engines, engine-out emissions have been lowered by adapting new combustion concepts such as low-temperature combustion and after-treatment systems have also been used to reduce tailpipe emissions. To optimize the control of both in-cylinder combustion and the efficiency of an after treatment system to reduce NOx, the amount of real-time NOx emissions should be determined. Therefore, in previous studies, the authors developed a real-time NO estimation model based on the in-cylinder pressure and the data available from the ECU during engine operation. The model was evaluated by comparing its results with a CFD model, which agreed well. Then, the model was implemented on an embedded system which allows real-time applications, and was verified on a 2.2-liter diesel engine. The model showed good agreement with the experimental results at various steady-state conditions and simple transient conditions.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

2012-04-16
2012-01-0681
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Optimization of Recompression Reaction for Low-Load Operation of Residual-Effected HCCI

2008-04-14
2008-01-0016
In-cylinder pre-processing (or recompression reaction) of direct-injected fuel during the negative valve overlap period of a retention-strategy HCCI engine is investigated for extension of the low-load limit of operation. Experimental studies of three variables (compression ratio, pilot injection timing, and pilot injection amount) were conducted in order to optimize the effects of recompression reaction by changing the sensible and chemical energy environment during recompression. The results from compression ratio variation show that there exist optimum values of equivalence ratio and extent of recompression reaction, which expand the low-load operating region. The pilot injection timing variation demonstrates good controllability of the extent of recompression reaction by effectively changing the in-cylinder residence time of the pilot-injected fuel.
Technical Paper

Strategies for Achieving Residual-Effected Homogeneous Charge Compression Ignition Using Variable Valve Actuation

2005-04-11
2005-01-0165
Residual-effected HCCI is investigated using a single-cylinder research engine equipped with fully-flexible variable valve actuation. Dilution limits are explored with various valve profiles in order to gain insight into the best way to use exhaust residual to achieve and control HCCI. The tests repeatedly point out the importance of delayed combustion phasing to reduce thermal losses and maximize efficiency. Combustion phasing is not significantly affected by charge in-cylinder residence time, but is strongly influenced by both the level of exhaust residual and by valve strategies that aim to affect homogeneity. Further dilution with air shows little promise for reaching lower loads, but does suggest that operation near the lean limit can maximize efficiency while minimizing NO and CO emissions.
X