Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Mechanism of White Smoke Generation Derived from Hydrocarbons Accumulations on Diesel Oxidation Catalyst

2018-04-03
2018-01-0641
White smoke emission is observed at the tailpipe of diesel vehicles when unburned hydrocarbons (HCs) are adsorbed on a diesel oxidation catalyst (DOC) under low exhaust gas temperature. The purpose of this study is to gain a better understanding of white smoke emission derived from HCs, and to reduce emission levels. First, the components of HCs and the particle size distribution of white smoke emission were analyzed. It was clarified that semi-volatile organic compounds (SVOC) and water are condensed around soluble organic fraction and the order of particle size in white smoke is submicron scale. Additionally, the correlation between the behavior of white smoke emission and the amount/quality of HCs adsorbed on a DOC were investigated by examining the change of zeolite content in the DOC. It was found that the heavy HCs ratio in adsorbed HCs on DOC increases with a decrease in zeolite content when DOC inlet gas temperature is 120 °C.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Journal Article

Mixing-Controlled, Low Temperature Diesel Combustion with Pressure Modulated Multiple-Injection for HSDI Diesel Engine

2010-04-12
2010-01-0609
This paper proposes a new mixing-controlled, low temperature combustion (LTC) approach for high-speed direct injection (HSDI) diesel engines. The purpose of this approach is to avoid the excessively high pressure-rise rate (PRR) of premixed, kinetics-controlled LTC and to enable the low nitrogen oxides (NOx) combustion to operate over the wide speed and load range of the engine. To address the soot/noise trade-off at high load LTC operating conditions, the pressure modulated multiple-injection coupled with swirl control was applied. This injection strategy enables the injection of high pressure (HP) main spray into the local high temperature region of the already burning low pressure (LP) pilot spray injected from the neighboring injection hole. By employing this injection strategy, the equivalence ratio (φ) distribution of mixture is drastically varied during main combustion processes.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
X