Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

High-Downforce Airfoil Design for Motorsports

2012-04-16
2012-01-1168
Using a combination of inverse airfoil design techniques, rapid interactive analysis methods, detailed computational fluid dynamics (CFD) and wind tunnel testing, aft loading of an airfoil has been explored as a design direction for high-downforce airfoils for race car rear wing applications while ensuring performance sustainability across a wide angle-of-attack operating range. Unlike in aircraft oriented high-lift airfoil designs, pitching moment constraints can be circumvented for race vehicle wing designs and this allows for further design freedom in the quest for downforce. The PROFOIL inverse design code was used to design a candidate airfoil exhibiting downforce maximized using aft loading at low Reynolds numbers.
Technical Paper

The Effects of Wing Aerodynamics on Race Vehicle Performance

2002-12-02
2002-01-3294
An analytical study is presented to determine the effects of wing aerodynamics on various racecar performance characteristics and on lap times for different types of tracks. The North Carolina State University (NCSU) Formula SAE car is used as the racing vehicle for this study. The study integrates design and analysis methods for airfoils and wings with performance-simulation methods for the racecar. Various performance parameters are considered to study in detail the effects on different portions of the track. A single wing is first used to examine the effects of aerodynamic downforce on car performance without considerations of the fore-and-aft location of the aerodynamic center of pressure. Subsequently a traditional dual-wing setup with a front and a rear wing is used to study the effect of downforce while satisfying a constraint on the location of the aerodynamic center of pressure.
X