Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Effects of Fuel Injection on Turbulence Enhancement in a Spray-Guided, Gasoline Direct-Injection, Optically Accessible Engine with a High-Pressure Injection System

2023-04-11
2023-01-0216
In this study, the effects of fuel injection on in-cylinder flow under various injection conditions were investigated using particle image velocimetry measurements in a two-cylinder, direct-injection spark-ignition, optically accessible engine with a spray-guided injection system. Various injection timings and pressures were applied to intensify the turbulence of in-cylinder flow. Simple double-injection strategies were used to determine how multiple injections affect in-cylinder flow. The average flow speed, turbulent kinetic energy, and enhancement level were calculated to quantitatively analyze the effects of fuel injection. Fuel injection can supply additional momentum to a cylinder. However, at an early injection timing such as 300° before top dead center, in-cylinder flow development could be disturbed by fuel injection due to piston impingement and interactions between the spray and air.
Technical Paper

Modeling Flash Breakup for a Direct-Injection Spark-Ignition Gasoline Engine

2017-03-28
2017-01-0548
An important challenge for modeling Direct-Injection Spark-Ignition (DISI) gasoline engines is understanding flash boiling spray. Flash boiling occurs when the ambient pressure is lower than the vapor pressure of the fuel and affects the spray structure and mixture formation process inside an engine. Gasoline is a multi-component fuel and the effects of each component on flash boiling are difficult to estimate. As a preliminary study to investigate the mixture formation process of the flash boiling spray, a single-component fuel was used to validate the flash breakup model. The flash breakup model was applied to KIVA 3V release2. Bubble growth in the drop was modelled by the Rayleigh-Plesset equation. When bubbles grow to satisfy the breakup criterion, breakup occurs and induces a smaller SMD for flash breakup cases. To investigate flash breakup modeling, simulations without the flash breakup model and with the flash breakup model was compared.
Technical Paper

Modeling and Parameterization Study of Fuel Consumption and Emissions for Light Commercial Vehicles

2014-03-24
2014-01-2020
This paper describes the effects of diverse driving modes and vehicle component characteristics impact on fuel efficiency and emissions of light commercial vehicles. The AVL's vehicle and powertrain system level simulation tool (CRUISE) was adopted in this study. The main input data such as the fuel consumption & emission map were based on the experimental value and vehicle components characteristic data (full load characteristic curves, gear shifting position curves, torque conversion curve etc.) and basic specifications (gross weight, gear ratio, tire radius etc.) were used based on the database or suggested value. The test database for two diesel vehicles adopted whether prediction accuracy of simulation data were converged in acceptable range. These data had been acquired from the portable emission measurement system, the exhaust emission and operating conditions (engine speed, vehicle speed, pedal position etc.) were acquired at each time step.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Technical Paper

An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations

2008-04-14
2008-01-0970
Lagrangian-Droplet and Eulerian-Fluid (LDEF) based spray models are widely used in engine and combustion system computations. Numerical grid and time-step-dependencies of Discrete Droplet Lagrangian spray models have been identified by previous researchers [1, 2]. The two main sources of grid-dependency are due to errors in predicting the droplet-gas relative velocity, and errors in describing droplet-droplet collision and coalescence processes. For reducing grid-dependency due to the relative velocity effects, results from gas jet theory are introduced along with a Lagrangian collision model [1, 3] and applied to model diesel sprays. The improved spray model is implemented in the engine simulation code KIVA-3V [4] and is tested under various conditions, including constant volume chambers and various engine geometries with vaporizing and combusting sprays with detailed chemistry.
Technical Paper

Investigation of Atomization Characteristics and Prediction Accuracy of Hybrid Models for High-Speed Diesel Fuel Sprays

2003-03-03
2003-01-1045
In this study, Investigation of atomization characteristics and prediction accuracy of hybrid models for high-pressure diesel fuel sprays is performed. To analyze the atomization characteristics numerically, hybrid breakup models that are composed of primary breakup and secondary breakup are used. To model the primary breakup, KH model and turbulence induced breakup models are selected, and RT model, DDB model, and TAB model are considered for the secondary breakup.
X