Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Non-Linear Modeling of Bushings and Cab Mounts for Calculation of Durability Loads

2014-04-01
2014-01-0880
Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation.
Journal Article

Energy Analysis of Power Steering Systems During a Newly Developed Driving Cycle

2011-04-12
2011-01-0230
Developments in power steering systems have been concentrated on the energy consumption as the environmental issues intensified in recent years. After the widely used hydraulic power steering system, the introduction of electric and electro-hydraulic power steering systems has shed light on the energy saving of the power steering system. In order to evaluate the energy consumption of the systems, firstly a new driving cycle was developed taking into account of both longitudinal and lateral driving behaviour. By comparing the vehicle response to the customer driving behaviour, the most similar sections on different traffic conditions were chosen therefore form the new driving cycle.
Technical Paper

On-Centre Steering Wheel Torque Characteristics during Steady State Cornering

2008-04-14
2008-01-0502
The steering wheel torque has an essential influence on the steering feel. In the chassis development process the tuning of the steering wheel torque characteristics is currently done empirically by altering the boost curve of the steering system. This paper shows how the steering assistance has to be chosen in order to achieve a harmonic steady-state steering wheel torque characteristics. It can be achieved by a linear rise of the defined steering assistance ratio versus the vehicle lateral acceleration. To determine the characteristics the gradient factor and the degressivity factor are needed only. The initial rise of the steering wheel torque versus the lateral acceleration is determined by the gradient factor. The degressivity factor describes the subsequent curvature of the characteristics.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
X