Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Techno-Economic Assessment of Future Fuels and Vehicle Technologies: Fuel Cell, Batteries, and Natural Gas Prospects in India

2023-04-11
2023-01-0234
This study investigates the techno-economic feasibility of India’s evolving transportation technology. The country’s progressive renewable energy targets (energy independent by 2047) and incentivized policies on lower carbon footprint fuels are accelerating the focus on green transport solutions. A bottom-up approach is utilized to demystify the techno-commercial viability of new technologies. The total cost of ownership (TCO) is an important metric for economic analysis. However, generalized data applications and simplified cost assumptions render inapplicability to local markets. In this study, the TCO model compares the vehicle technology’s energy, emissions, and cost, based on scientific co-relations. A 12-meter-bus market is used to compare Battery-powered Electric buses (BEB), Fuel Cell Electric Buses (FCEB), and prevalent Compressed Natural Gas Engine buses (CNGB) for a service life of 12 years.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

Effect of Oil and Gasoline Properties on Pre-Ignition and Super-Knock in a Thermal Research Engine (TRE) and an Optical Rapid Compression Machine (RCM)

2016-04-05
2016-01-0720
High boost and direct injection are effective ways for energy saving in gasoline engines. However, the occurrence of super-knock at high load has become a main obstacle for further improving power density and fuel economy. It has been known that super-knock can be induced by pre-ignition, and oil droplet auto-ignition is found to be one of the possible mechanisms. In this study, experiments were conducted in a single-cylinder thermal research engine (TRE), in which different types of oil and surrogates were directly injected into the cylinder and then led to pre-ignition and super-knock. The effect of oil injection timing, oil injection quantity, different gasoline and different oil were tested. All the oil in this work could induce pre-ignition, even though their combustion phasing was much later than that in the case of n-hexadecane.
Technical Paper

Numerical Resolution of Multiple Premixed Compression Ignition (MPCI) Mode and Partially Premixed Compression Ignition (PPCI) Mode for Low Octane Gasoline

2013-10-14
2013-01-2631
Two premixed compression ignition modes for low octane gasoline are numerically investigated. The multiple premixed compression ignition (MPCI) mode is featured with a sequence of “spray- combustion- spray- combustion”, while the partially premixed compression ignition (PPCI) mode is a sequence of “spray- spray- combustion”. This paper compares the combustion process of the two modes using multi-dimensional CFD code, KIVA-3v, which can perform chemical reaction calculations for different fuels by a discrete multiple component (DMC) method. The fuel used for simulation consists of 58.5% i-C8H18 and 41.5% n-C7H16 in volume, and has the same RON and similar physical properties to straight-run naphtha used in the experiment. The engine operating condition is fixed at a 1600rpm and 0.7 MPa IMEP. The injection strategies for these two modes are different. All of the parameters in the simulation come from the single cylinder engine experiments.
Journal Article

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

2011-12-06
2011-01-2396
Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution.
Technical Paper

The Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-out and Tailpipe Particulate Matter Emissions

2010-10-25
2010-01-2125
In this work, the influences of ethanol and iso-butanol blended with gasoline on engine-out and post three-way catalyst (TWC) particle size distribution and number concentration were studied using a General Motors (GM) 2.0L turbocharged spark ignition direct injection (SIDI) engine. The engine was operated using the production engine control unit (ECU) with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. U.S. federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at 10 selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
X