Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis and Control of Displacement Transmissibility and Force Transmissibility for a Two DOF Model Based on Quarter Car Concept using a Mixed Mode Magnetorheological Fluid Mount

2010-10-05
2010-01-1911
The chassis are subject to both road profile and engine or pump/motor vibration when a vehicle is moving on the road. The suspension is developed to reduce the effect of the road conditions to the chassis. The vibration from engine or pump/motor of hydraulic hybrid vehicles (HHV) will be also transmitted to the chassis and needs to be isolated. A mixed mode magnetorheological (MR) fluid mount is presented to isolate force vibration for a two degree of freedom (DOF) model based on quarter car concept. The MR fluid mount is designed to work in flow mode and squeeze mode separately and simultaneously. The skyhook control for the MR fluid mount is also been designed and simulated. Both displacement transmissibility and force transmissibility for each mode and for combined modes have been obtained. These simulation results present a basis for designing a more effective controller to control both the displacement transmissibility and force transmissibility.
Technical Paper

Performance Evaluation of a Semi-Active Magnetorheological Mount

2008-04-14
2008-01-0429
The paper presents the design and control aspects of a magnetorheological (MR) fluid based mount. The proposed design yields a high static stiffness and a low dynamic stiffness in the working frequency range of the mount, enhancing the vibration isolation capabilities of the mount compared to existing hydraulic mounts. Vertical vibrations, namely displacement/force transmissibility, can be isolated or significantly reduced, in real time, by controlling the fluid yield stress through an applied electric current. The mount governing equations are derived and the effectiveness of the mount is evaluated for two cases: low frequency-high displacement and at high frequency-low displacement. These cases correspond to the operation of the mount in squeeze mode and in flow mode, respectively. Preliminary results on the implementation of a skyhook control strategy are also presented.
Technical Paper

Analytical Modeling and Simulation of a Swash Plate Pump/Motor

2008-04-14
2008-01-0573
This paper presents a computer generated model of a hydraulic circuit that is typically seen in hybrid hydraulic vehicles (HHV's). HHV's have shown considerable potential for increasing fuel economy and decreasing emissions for mid-size and commercial trucks that exhibit urban driving habits. The aim of the present model is to aid in further optimizing the performance of the hybrid powertrain and serve as a baseline for future studies into the noise and vibration (NV) associated with the system. The model simulates the regenerative braking process of a parallel type hybrid hydraulic propulsion system. Regenerative braking captures and stores otherwise lost energy into an accumulator. This stored energy can then later be used to propel the vehicle, thus reducing the vehicle's reliance on a conventional internal combustion engine (ICE). This model will serve as a baseline for future developments and will be expanded and validated experimentally in ensuing research.
Technical Paper

Chassis Vibration Control for Hydraulic Hybrid Vehicles

2006-02-14
2006-01-1970
Gasoline-electric hybrid vehicles are becoming popular due to their high fuel efficiency and lower emission. While this technology has proven effective for passenger cars and light SUVs, it is not as effective for heavier vehicles. Hydraulic hybrid vehicles offer an alternative hybridization technology for heavier vehicles. This alternative technology is especially effective for frequent-stop vehicles including city buses, delivery vehicles, and refuse trucks. This paper, using simulations, investigates the noise and vibration problem of hydraulic hybrid vehicles. The noise and vibration is mainly caused by the moving parts of the pump/motor, which is the main component of hydraulic hybrid systems. The variable speed motion of the pump/motor inner parts takes place under time-varying levels of hydraulic high pressure. The proposed solution consists of magnetorheological (MR) mounts isolating the hybrid system from the vehicle chassis.
Technical Paper

Application of Time-Domain Identification Techniques for Evaluating Heavy Truck Dynamics

2003-11-10
2003-01-3413
The primary purpose of this paper is to evaluate how various time-domain system identification techniques, which have been successfully used for different dynamic systems, can be applied for identifying heavy truck dynamics. System identification is the process by which a model is constructed from prior knowledge of a system and a series of experimental data. The parameters obtained from the identification process can be used for developing or improving the mathematical representation of a physical system. In contrast to lighter vehicles, heavy trucks have considerably more flexible frames. The frame can exhibit beaming dynamics in a frequency range that is within the range of interest for evaluating the ride and handling aspects of the truck. Understanding the dynamic contributions of the truck frame is essential for improving the ride characteristics of a vehicle. This understanding is also needed for designing new frame configurations for the existing or new production trucks.
X