Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Technical Analysis of Severe Cornering Induced Tire Wear on Vehicle Limit Handling through Repeatable On-Track Vehicle Testing

2018-04-03
2018-01-0558
In repeated physical testing of vehicles at or near their handling limit, tire shoulder wear occurs that is not typical of normal customer use. It has been observed for decades that this type of severe cornering induced tire wear can have a significant effect on the force and moment characteristics of tires. In this study, the severe cornering wear effect was studied by testing vehicles in a highly controlled manner using a robot steering controller. This testing shows how vehicle response to the exact same steering input changes significantly as the number of runs on the same tires accumulates. In fact, vehicles were found to not lift tires from the ground in initial runs then tip-up hard onto outriggers in later runs as the tires are abraded. Additionally, for one vehicle configuration an additional run was made with tires that had accumulated 16,000 km (10,000 miles) of normal customer usage.
Technical Paper

The Causal Relationship between Wheel Rim Gouging Forces on Roadway Surfaces and Rollover Crashes

2018-04-03
2018-01-0556
There has been a general consensus in the scientific literature that a rim gouging, not scraping, into a roadway surface generates very high forces which can cause a vehicle to overturn in some situations. However, a paper published in 2004 attempts to minimize the forces created during wheel rim gouging and the effect on vehicle rollover. This paper relied largely on heavily filtered lateral acceleration data and discounted additional test runs by the authors and NHTSA that did not support the supposed conclusions. This paper will discuss the effect of rim gouging using accepted scientific methods, including full vehicle testing where vehicle accelerations were measured during actual rim gouging events and static testing of side forces exerted by wheels mounted on a moving test fixture. The data analyzed in this paper clearly shows that forces created by rim gouges on pavement can be thousands of Newtons and can contribute to vehicle rollover.
Journal Article

An Analysis of Recreational Off Road Vehicle Tire Performance Characteristics

2016-04-05
2016-01-1635
Recreational Off Road Vehicles (ROVs) which are sometimes referred to as side-by-sides, have increased in popularity over the last decade. These vehicles are available in many different sizes and performance characteristics from a host of different manufacturers and also have a variety of different missions, just as there are many types of off road terrain. The United States Federal Government, through the Consumer Product Safety Commission (CPSC), has advocated and proposed vehicle handling and rollover resistance standards for the side-by-sides which have a top speed above 25 miles per hour (these are not defined as “low speed vehicles”). For the sake of repeatability, the proposed maneuvers are to be performed on a high friction hard surface (like asphalt) as opposed to the off road surfaces (i.e. grass, sand, dirt, mud. rocks, etc.) that these vehicles are designed to be operated on.
Journal Article

The True Definition and Measurement of Oversteer and Understeer

2015-04-14
2015-01-1592
The concept of vehicle understeer and oversteer has been well studied and equations, test methods, and test results have been published for many decades. This concept has a specific definition in the steady-state driving range as opposed to quantification in highly transient limit handling events. There have been specific test procedures developed and employed by automotive engineers for decades on how to quantify understeer. These include the constant radius method, the constant steering wheel angle/variable speed method, the constant speed/ variable radius method, and the constant speed/variable steer method. These methods are very good for calculating the understeer gradient but care must be taken in interpreting the result at the limits of tire traction since lateral tire forces can be reduced on a drive axle when significant throttle is applied.
Technical Paper

Applying Camera Matching Methods to Laser Scanned Three Dimensional Scene Data with Comparisons to Other Methods

2015-04-14
2015-01-1416
In the field of accident reconstruction, a reconstructionist will often inspect a crash scene months or years after a crash has occurred. With this passage of time important evidence is sometimes no longer present at the scene (i.e. the vehicles involved in the crash, debris on the roadway, tire marks, gouges, paint marks, etc.). When a scene has not been totally documented with a survey by MAIT or the investigating officers, the reconstructionist may need to rely on police, fire department, security camera, or witness photographs. These photos can be used to locate missing evidence by employing traditional photogrammetric techniques. However, traditional techniques require planar surfaces, matched discrete points, or camera matching at the scene.
Journal Article

An Objective Analysis of the Effect of Tire Tread Depth on Crash Causation and Wet Road Vehicle Dynamics

2013-04-08
2013-01-0701
This paper explores tire placement with given tread depths on vehicles from two distinct perspectives. The first area explored is an analysis of crash data recently reported by the National Highway Traffic Safety Administration (NHTSA). In this report, thousands of tire-related crashes were investigated where the tread depth and inflation pressure were logged for each tire and assessments were made as to whether tire condition was a factor in the crash. The analysis of the data shows that in regards to accident causation, it is not statistically significant which axle has the deepest tread. What is significant is that a tread depth at or below 4/32″ anywhere on the vehicle leads to an increased rate of crashes. To understand the physics implied by the NHTSA data, a study was performed on how the placement of tires of various tread depths affects the steering, handling, and braking performance of a modern sport utility vehicle.
Technical Paper

Benefits and Methodology for Dimensioning a Vehicle Using a 3D Scanner for Accident Reconstruction Purposes

2012-04-16
2012-01-0617
In the field of accident reconstruction, it is often important to measure the deformation of a vehicle (i.e. automobile, truck, motorcycle, etc.) after a crash has occurred. This data can be used for many purposes including energy calculations for speed loss, measuring roof or other structural deformation, analyzing seat or seat belt component positions, frame or unitized body structure deformation, and for estimating the actual post crash condition of a vehicle prior to the damage inflicted by the cutting and spreading tools used by emergency personnel. Traditionally, vehicle damage was measured using plumb bobs and tape measures or laser transits. However, these methods are not only time consuming but they also require a significant amount of upfront analysis to determine which points on the vehicle to measure at the inspection. In recent years, newer methods such as photogrammetry software and three dimensional scanners have come into play.
Journal Article

Steering and Handling Performance During a Full Tire Tread Belt Separation

2011-04-12
2011-01-0973
In this study, tests were performed with modified tires at the various front and rear positions on seventeen different vehicles to determine the effect of a full tire tread belt separation on a vehicle at highway speeds. The driver's steering and braking inputs were measured along with the vehicle responses during the event. The results show that the forces of a full tread belt separation generally do not force a vehicle out of a driver's control and that only small steering corrections are required to remain in the original lane of travel during the tread belt separation event. Additionally, forces due to the separating tires do not result in violent hop or tramp suspension responses during the separation event.
X