Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Journal Article

Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method

2010-04-12
2010-01-0346
In order to study the soot formation and oxidation phenomena during the combustion process of Gasoline Direct Injection (GDI) engines, soot volume fraction measurements were performed in an optical GDI engine by combined Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM). The coupling of these two diagnostics takes advantages of their complementary characteristics. LII provides a two-dimensional image of the soot distribution while LEM is used to calibrate the LII image in order to obtain soot volume fraction fields. The LII diagnostic was performed through a quartz cylinder liner in order to obtain a vertical plane of soot concentration distribution. LEM was simultaneously performed along a line of sight that was coplanar with the LII plane, in order to carry out quantitative measurements of path-length-averaged soot volume fraction. The LII images were calibrated along the same path as that of the LEM measurement.
Journal Article

Formation of Unburned Hydrocarbons in Low Temperature Diesel Combustion

2009-11-02
2009-01-2729
Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Influence of the Local Mixture Characteristics on the Combustion Process in a CAI™ Engine

2008-06-23
2008-01-1671
Among the existing concepts to help improve the efficiency of spark ignition engines on low load operating points, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions at part load without major modifications of the engine design. The CAI™ concept is founded on the auto-ignition of a highly diluted gasoline-based mixture in order to reach high indicated efficiency and low pollutant emissions through a low temperature combustion. Previous research works have demonstrated that the valve strategy is an efficient way to control the CAI™ combustion mode. Not only the valve strategy has an impact on the amount of trapped burnt gases and their temperature, but also different valve strategies can lead to equivalent mean in-cylinder conditions but clearly differentiated combustion timing or location. This is thought to be the consequence of local mixture variations acting in turn on the chemical kinetics.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

2006-04-03
2006-01-1262
An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

Investigation of Mixture Quality Effect on CAI Combustion

2005-04-11
2005-01-0141
The purpose of this study was to gain a better understanding of the fundamental aspects of the CAI combustion process in order to assess the possibilities of controlling CAI combustion through mixture quality. The experimental work was conducted on a single-cylinder gasoline engine equipped with optical access and was completed with 3D simulation of the gas exchange and compression strokes. Two engine configurations (negative valve overlap and burned gas re-breathing) were tested. In CAI combustion, controlling the heat release rate implies limiting the volume of the reaction zone by charge stratification, or decreasing the reaction rate by increasing the dilution. Consequently, a significant part of the work was focused on the investigation of the correlation between the mixture quality and the CAI combustion process.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
X