Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise

2016-06-15
2016-01-1834
This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
Journal Article

Investigation of Tire-Road Noise with Respect to Road Induced Wheel Forces and Radiated Airborne Noise

2014-06-30
2014-01-2075
Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented.
Technical Paper

Investigation of Tire Road Noise with Special Consideration of Airborne Noise Transmission

2009-05-19
2009-01-2109
One of the main customer requirements for passenger cars is a pleasant sound based on a low interior noise level. Because of the reduction of many single noise sources, tyre road noise is now becoming increasingly important. In this paper an efficient approach for investigation of tire road noise is presented. First based on coherence analysis the main noise transmission behaviors are identified. Relevant frequency ranges for structure borne noise and airborne noise can be determined. Additionally it’s possible to separate noise transmission coming from front or rear axle. With this preliminary analysis /1/ it’s possible to reduce the effort to the limit. Now for structure borne noise transmission as well as for airborne noise transmission the critical paths are identified via transfer path analysis (TPA). For the estimation of airborne noise paths two different methods are compared. First the relevant airborne noise transfer paths are estimated via matrix inversion method /2/.
Technical Paper

Panel Noise Contribution Analysis: An Experimental Method for Determining the Noise Contributions of Panels to an Interior Noise

2003-05-05
2003-01-1410
A new method for estimating the sound pressure level (SPL) at a defined position of the interior is presented. It is possible to recalculate the interior noise dependent on the sound radiated by specified panels which encloses the interior. It could be applied to analyse the interior acoustics under different operating conditions. This could be normal driving on real roads or pure wind noise inside wind tunnels. Also it is possible to study the interior noise under an artificial force excitation applied to the trimmed body. The method is based on the theoretical background of TPA (= Transfer Path Analysis /1/ ) via matrix inversion. It was tested on a simple cuboid structure with an artificial force excitation. The comparison of the measured and recalculated SPL of the interior shows a good correlation. Also the influence of some physical modifications at identified critical areas corresponds with the expected influence to the measured SPL inside this structure.
X