Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Cellulosic Ethanol Fuel Quality Evaluation and its Effects on PFI Intake Valve Deposits and GDI Fuel Injector Plugging Performance

2013-04-08
2013-01-0885
The U.S. Renewable Fuel Standard 2 (RFS2) mandates the use of advanced renewable fuels such as cellulosic ethanol to be blended into gasoline in the near future. As such, determining the impact of these new fuel blends on vehicle performance is important. Therefore, General Motors conducted engine dynamometer evaluations on the impact of cellulosic ethanol blends on port fuel injected (PFI) intake valve deposits and gasoline direct injected (GDI) fuel injector plugging. Chemical analysis of the test fuels was also conducted and presented to support the interpretation of the engine results. The chemical analyses included an evaluation of the specified fuel parameters listed in ASTM International's D4806 denatured fuel ethanol specification as well as GC/MS hydrocarbon speciations to help identify any trace level contaminant species from the new ethanol production processes.
Technical Paper

The Influence of Biodiesel Fuel Quality on Modern Diesel Vehicle Performance

2012-04-16
2012-01-0858
Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467, “Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).” However, recent U.S. market place fuel surveys have shown that many retail biodiesel samples are out of specification. A vehicle designed to use biodiesel blends is likely to encounter occasional use of poor quality biodiesel fuel; and therefore understanding the effects of bad marketplace biodiesel fuels on engine and fuel system performance is critical to develop durable automotive technologies. The results presented herein are from vehicle evaluation studies with both on-specification and off-specification bio-based fuels. These studies focused on the performance of fuel injection equipment, engine, engine oil, emissions and emissions system durability.
Technical Paper

Test and Control of Fuel Injector Deposits in Direct Injected Spark Ignition Vehicles

2009-11-02
2009-01-2641
With the wider use of Direct Injection Spark Ignition (DISI) vehicles in the marketplace, a program was conducted to develop a short-duration fuel injector fouling test. Once a specific driving cycle and base fuel combination was found to produce a significant increase in Long Term Fuel Trim (LTFT), several Deposit Control Additive (DCA) technologies were evaluated for their ability to keep the direct gasoline injectors clean. The increase in LTFT is indicative of fuel injector fouling and a corresponding decrease in flow through them. The test vehicles for this program were a 2008 General Motors Pontiac Solstice GXP equipped with a DISI 2.0 liter turbocharged I-4 and a 2008 Audi A4 equipped with a DISI 3.2 liter V-6 engine. A proprietary base fuel formulated to mimic a U.S. EPA 65th percentile fuel was tested to assess its deposit forming tendencies.
X