Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Technical Paper

A Cost-Driven Method for Design Optimization Using Validated Local Domains

2013-04-08
2013-01-1385
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, we have previously proposed an approach where design optimization and model validation, are concurrently performed using a sequential approach with variable-size local domains. We used test data and statistical bootstrap methods to size each local domain where the prediction model is considered validated and where design optimization is performed. The method proceeds iteratively until the optimum design is obtained. This method however, requires test data to be available in each local domain along the optimization path. In this paper, we refine our methodology by using polynomial regression to predict the size and shape of a local domain at some steps along the optimization process without using test data.
Technical Paper

System Failure Identification using Linear Algebra: Application to Cost-Reliability Tradeoffs under Uncertain Preferences

2012-04-16
2012-01-0914
Reaching a system level reliability target is an inverse problem. Component level reliabilities are determined for a required system level reliability. Because this inverse problem does not have a unique solution, one approach is to tradeoff system reliability with cost and to allow the designer to select a design with a target system reliability, using his/her preferences. In this case, the component reliabilities are readily available from the calculation of the reliability-cost tradeoff. To arrive at the set of solutions to be traded off, one encounters two problems. First, the system reliability calculation is based on repeated system simulations where each system state, indicating which components work and which have failed, is tested to determine if it causes system failure, and second, the task of eliciting and encoding the decision maker's preferences is extremely difficult because of uncertainty in modeling the decision maker's preferences.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Reliability Prediction for the HMMWV Suspension System

2011-04-12
2011-01-0726
This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented.
Technical Paper

GPU-based High Performance Parallel Simulation of Tracked Vehicle Operating on Granular Terrain

2010-04-12
2010-01-0650
This contribution demonstrates the use of high performance computing, specifically Graphics Processing Unit (GPU) based computing, for the simulation of tracked ground vehicles. The work closes a gap in physics based simulation related to the inability to accurately characterize the 3D mobility of tracked vehicles on granular terrains (sand and/or gravel). The problem of tracked vehicle mobility on granular material is approached using a discrete element method that accounts for the interaction between the track and each discrete particle in the terrain. This continuum approach captures the dynamics of systems with more than 1,000,000 bodies interacting simultaneously. Two factors render the approach feasible. First, the frictional contact problem between the terrain and the vehicle draws on a convex optimization methodology in which the solution becomes the first order optimality condition of a cone complementarity problem.
Technical Paper

An Integrated High-Performance Computing Reliability Prediction Framework for Ground Vehicle Design Evaluation

2010-04-12
2010-01-0911
This paper addresses some aspects of an on-going multiyear research project for US Army TARDEC. The focus of the research project has been the enhancement of the overall vehicle reliability prediction process. This paper describes briefly few selected aspects of the new integrated reliability prediction approach. The integrated approach uses both computational mechanics predictions and experimental test databases for assessing vehicle system reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level.
Journal Article

Agile Modeling of Component Connections for Simulation and Design of Complex Vehicle Structures

2009-04-20
2009-01-0807
Many efficient modeling methods have been developed for analyzing the effects of component-level variations and uncertainties on the system-level response of complex structures. However, relatively little work has addressed the efficient or agile modeling of variations in the connections between components. Such a capability would be useful for simulation (e.g., performing reliability analysis accounting for spot welding variations) and design (e.g., determining fastener locations for up-armor kits) of commercial and military ground vehicle structures. In this work, a component mode synthesis approach to structural modeling is enhanced by also modeling variations in the connections between components. With this framework, changes in the joining or fastening of the components can be considered in a structural analysis or design process. The components are condensed statically or dynamically with all the candidate joining nodes being retained as active degrees of freedom.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

System Level RBDO for Military Ground Vehicles using High Performance Computing

2008-04-14
2008-01-0543
The Army continues to improve its Reliability-based Design Optimization (RBDO) process, expanding from component optimization to system optimization. We are using the massively parallel computing power of the Department of Defense (DoD) High Performance Computing (HPC) systems to simultaneously optimize multiple components which interact with each other in a mechanical system. Specifically, we have a subsystem of a military ground vehicle, consisting of more than four components and are simultaneously optimizing five components of that subsystem using RBDO methods. We do not simply optimize one component at a time, sequentially, and iterate until convergence. We actually simultaneously optimize all components together. This can be done efficiently using the parallel computing environment. We will discuss the results of this optimization, and the advantages and disadvantages of using HPC systems for this work.
Journal Article

Analysis of Passive Vibration Measurement and Data Interrogation Issues in Health Monitoring of a HMMWV Using a Dynamic Simulation Model

2008-04-14
2008-01-0542
Integrated health monitoring technologies are being developed for military ground vehicles to enable condition based maintenance in the short term and prognostic health management in the long term. Technical issues related to health monitoring of a military HMMWV are examined using a dynamic simulation model. Both free and forced vibration response analyses are conducted to examine the effects of damage and operational conditions on the vehicle response. The higher frequency modal properties are found to be sensitive to frame and cross member damage whereas the lower frequency sprung modal properties are not. Changes due to adding up armor are found to be much larger than those due to damage. In addition, cross member damage affects the higher frequency modes whereas damage to the left or right frames causes changes to the modal behavior across the entire frequency range making this type of damage most detectable.
Technical Paper

Predicting Military Ground Vehicle Reliability using High Performance Computing

2007-04-16
2007-01-1421
To impact the decision making for military ground vehicles, we are using High Performance Computing (HPC) to speed up the time for analyzing the reliability of a design in modeling and simulation. We use parallelization to get accurate results in days rather than months. We can obtain accurate reliability prediction with modeling and simulation, using uncertainties and multiple physics-of-failure, but by utilizing parallel computing we get results in much less time than conventional analysis techniques.
X