Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Phenomenological Modelling of Oxygen-Enriched Combustion and Pollutant Formation in Heavy-Duty Diesel Engines using Exhaust Gas Recirculation

2012-09-10
2012-01-1725
A theoretical study is conducted to examine the effects of oxygen enrichment of intake air and exhaust gas recirculation (EGR) on heavy-duty (HD) diesel engine performance characteristics and pollutant emissions. A phenomenological multi-zone model was properly modified and used to assess the impact of intake air oxygen-enhancement and EGR on the operating and environmental behavior of a HD diesel engine under various operating conditions. Initially, an experimental validation was performed to assess the predictive ability of the multi-zone model using existing data from a HD turbocharged common-rail diesel engine at the 12 operating points of the European Stationary Cycle (ESC) considering certain high-pressure cooled EGR rate at each operating point.
Technical Paper

Potentiality for Optimizing Operational Performance and Thermal Management of Diesel Truck Engine Rankine Cycle by Recovering Heat in EGR Cooler

2010-04-12
2010-01-0315
Further reduction of brake specific fuel consumption (bsfc) in heavy-duty diesel engines, which are used for vehicle applications, is of utmost importance due to high fuel prices, global warming issue (CO₂ emissions) and continuously stringent environmental regulations. Specifically, the necessity for further reduction of specific diesel oil consumption and increase of vehicle mileage, respectively, is more pronounced in large haul diesel trucks due to technical, environmental and economical reasons. Heavy-duty (HD) direction injection (DI) diesel engines are used in these vehicles, which indicate a rather high power output in the range of 200-400 kW. During recent years, various measures have been proposed from engine manufacturers and researchers for improving combustion process and through that, increasing the fuel economy of diesel engines.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Potential Benefits in Heavy Duty Diesel Engine Performance and Emissions from the Use of Variable Compression Ratio

2006-04-03
2006-01-0081
Worldwide demand for reduction of automotive fuel consumption and carbon dioxide emissions results in the introduction of new diesel engine technologies. A promising technique for increasing the power density of reciprocating engines, improving fuel economy and curtailing engine exhaust emissions is the use of variable compression ratio (VCR) technology. Several automotive manufacturers have developed prototype vehicles equipped with VCR gasoline engines. The constructive pattern followed to alter the compression ratio varies with the manufacturer. The implementation of VCR technology offers two main advantages: the reduction of CO2 emissions due to optimal combustion efficiency in the entire range of engine operating conditions and the increase of power concentration due to high boosting of a small engine displacement (i.e., engine downsizing).
Technical Paper

Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines

2006-04-03
2006-01-1414
Diesel engine manufacturers are currently intensifying their efforts to meet future emission limits that require a drastic reduction of NOx and particulate matter compared to present values. Even though several after-treatment techniques have been developed for tailpipe NOx reduction in heavy duty diesel engines, the in-cylinder control of NOx formation still remains of utmost importance. Various methods have been used to control NOx formation in diesel engines such as retarded injection timing and EGR providing each one of them very promising results. However, use of these techniques is accompanied by penalties in specific fuel consumption and exhaust soot. A promising technology for NOx reduction especially for heavy-duty diesel engines and mainly large scale ones is the addition of water to the combustion chamber to reduce peak combustion temperature that obviously affects NOx formation.
Technical Paper

Use of a Multi-Zone Combustion Model to Interpret the Effect of Injector Nozzle Hole Geometry on HD DI Diesel Engine Performance and Pollutant Emissions

2005-04-11
2005-01-0367
A major challenge in the development of future heavy-duty diesel engines is the reduction of NOx and particulate emissions with minimum penalties in fuel consumption. The further decrease of emission limits (i.e., EPA 2007-2010, Euro 5 and Japan 05) requires new, advanced approaches. The injection system of DI diesel engines has an important role regarding the fulfillment of demands for low pollutant emissions and high engine efficiency. One of the injection system parameters affecting fuel spray characteristics, fuel-air mixing and consequently, combustion and pollutant formation is the geometry of the nozzle hole. A detailed experimental investigation was conducted at UPV-CMT using three different nozzle hole types: a standard, a convergent and a divergent one to discern the effect of nozzle hole conical shape on engine performance and emissions.
Technical Paper

Possibilities to Achieve Future Emission Limits for HD DI Diesel Engines Using Internal Measures

2005-04-11
2005-01-0377
The diesel engine is currently the most efficient powertrain for vehicle propulsion. Unfortunately it suffers from rather high particulate and NOx emissions that are directly related to its combustion mechanism. Future emission legislation requires drastic reduction of NOx and particulate matter compared to present values. Engine manufacturers in their effort to meet these limits propose two solutions: reduction of pollutants inside the combustion chamber using internal measures and reduction at the tailpipe using aftertreatment technology. Currently there are various opinions considering the final solution. Taking into account information related to aftertreatment technology, an effort should be made to reduce pollutants inside the combustion chamber as much as possible. The last is obvious if we account for the even more strict emission limits to be applied after 2010 that will require a combination of aftertreatment and internal measures.
Technical Paper

Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels: A Review

2004-10-25
2004-01-2924
A method to curtail emissions of smoke and other pollutants from diesel engines is to enhance the oxygen supply to their combustion chamber. This can be accomplished by enriching either the intake air stream or the fuel stream with oxygen. Experimental studies concerning the oxygen-enrichment of intake air, have revealed large decrease of ignition delay, drastic decrease of soot emissions as well as reduction of CO and HC emissions while, brake specific fuel consumption (BSFC) remained unaffected and increasing of power output is feasible. However, this technique was accompanied by considerable increase of NOx emissions. Experimental and theoretical studies with oxygenated fuels have demonstrated large decrease of soot emissions, which correlated well with the fuel oxygen content. Reduction of CO and HC emissions with oxygenated fuels was also obtained. However, penalties in both BSFC and NOx emissions have been observed with oxygenation of diesel fuels.
Technical Paper

Theoretical Study Concerning the Effect of Oxygenated Fuels on DI Diesel Engine Performance and Emissions

2004-06-08
2004-01-1838
Diesel engine manufacturers have succeeded in developing engines with high power concentration and thermal efficiency without disregarding to comply with the continuous stringent emission regulations. Nowadays, several techniques such as injection control strategies, EGR and exhaust after treatment devices have been used to reduce diesel emissions. However, emission control alternatives are often accompanied by fuel consumption or cost penalties and also, the request for improving the pollutant emissions behavior of the existing diesel vehicle fleet has become mandatory. Thus, research scientists and engineers have focused also on the area of fuel composition for the reduction of pollutant emissions. Of major importance seems to be the use of oxygenated additives to reduce particulate emissions. According to recent studies, soot emissions are decreased following the increase of oxygen percentage.
Technical Paper

Experimental Investigation to Specify the Effect of Oxygenated Additive Content and Type on DI Diesel Engine Performance and Emissions

2004-03-08
2004-01-0097
The reduction of brake specific consumption and pollutant emissions are issued as future challenges to diesel engine designers due to the depletion of fossil fuel reserves and to the continuous suppression of emission regulations. These mandates have prompted the automotive industry to couple the development of combustion systems in modern diesel engines with an adequate reformulation of diesel fuels and have stirred interest in the development of “clean” diesel fuels. The use of oxygenated fuels seems to be a promising solution towards reducing particulate emissions in existing and future diesel motor vehicles. The prospective of minimizing particulate emissions with small fuel consumption penalties seems to be quite attractive in the case of biodiesel fuels, which are considered as an alternative power source. Studies conducted in diffusion flames and compression ignition engines have shown a reduction of soot with increasing oxygen percentage.
Technical Paper

Application and Evaluation of a Detailed Friction Model on a DI Diesel Engine with Extremely High Peak Combustion Pressures

2002-03-04
2002-01-0068
During the past years, extensive research efforts have led to the development of diesel engines with significantly improved power concentration and fuel efficiency as compared to the past. But unfortunately, the increase of engine thermal efficiency is accompanied by a sharp increase of peak cylinder pressure. At the moment, peak pressures in the range of 230-240 bar have been reported. Naturally, a question remains as to whether such increased peak pressures could have an overall detrimental impact on mechanical efficiency. Initially, it was expected that these would have a negative impact and this was the motive for conducting the present work and developing a detailed friction model. Up to now, various correlations have been proposed that provide the friction mean effective pressure as a function of engine speed and load mainly, neglecting the effect of peak pressure or using data up to 130-140 bar.
Technical Paper

Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures

2001-03-05
2001-01-0333
Engineers use phenomenological simulation models to determine engine performance. Using these models, we can predict with reasonable accuracy the heat release rate mechanism inside the engine cylinder, which enables us to obtain a prediction of the pressure history inside the engine cylinder. Using this value and the volume change rate of the combustion chamber, we can then estimate the indicated power output of the engine. However, in order to obtain the brake engine power output we must have an indication for the mechanical losses, a great part of which are friction losses. Up to now various correlations have been proposed that provide the frictional mean effective pressure as a function mainly of engine speed and load. These correlations have been obtained from the processing of experimental data, i.e. experimental values for the indicated and brake power output of engines.
X