Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Folded Pelvis-Thorax Side Airbag Modeling with CFD Approach and Implementation in Full Vehicle Crash Analysis

2017-03-28
2017-01-1460
The Pelvis-Thorax Side Air Bag (PTSAB) is a typical restraint countermeasure offered for protection of occupants in the vehicle during side impact tests. Currently, the dynamic performance of PTSAB for occupant injury assessment in side impact is limited to full-vehicle evaluation and sled testing, with limited capability in computer aided engineering (CAE). The widely used CAE method for PTSAB is a flat bag with uniform pressure. The flat PTSAB model with uniform pressure has limitations because of its inability to capture airbag deployment during gap closure which results in reduced accuracy while predicting occupant responses. Hence there is a need to develop CAE capability to enhance the accuracy of prediction of occupant responses to meet performance targets in regulatory and public domain side impact tests. This paper describes a new CAE methodology for assessment of PTSAB in side impact.
Technical Paper

Simulation of Outer Door Handle and Latch Responses in Side Impact using Component Test Methodology

2007-04-16
2007-01-0712
A dynamic component test methodology using a door sub-system was developed to simulate the outside door handle/latch responses (accelerations and deformations) as in a full-vehicle NHTSA FMVSS 214 side impact test. The test methodology consists of a door sub-system (with door inner components) which is allowed to pivot by means of a hinge at the top of the door. The lateral structural load path affecting the door/rocker response was accounted and simulated (obtained from full-vehicle FE analysis) in this methodology by means of an energy absorbing material (Aluminum honeycomb) of predetermined stiffness. A bullet sled simulating the Moving Deformable Barrier (MDB) surface and stiffness at the same relative location to the door/rocker (as in full-vehicle test) strikes the stationary hinged door at an initial velocity of approx. 30 mph (longitudinal component of crab cart velocity of 33.5 mph).
X