Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

6-Axis Measuring Wheels for Trucks or Heavy Vehicles

2014-04-01
2014-01-0816
The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicles. In this paper, the design and the employment of measuring wheels for trucks and heavy vehicles is presented. The measuring wheels have been optimized in order to obtain high stiffness and the approximately the same mass of the wheels normally employed. The proposed multicomponent measuring wheels are high- accuracy instruments for measuring the dynamic loads during handling and durability testing. The measuring wheels can replace the wheels of the truck under normal operation. Such family of wheels plays a major role in modern road vehicles development. The measuring wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the measuring wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road.
Journal Article

Indoor/Outdoor Testing of a Passenger Car Suspension for Vibration and Harshness Analysis

2012-04-16
2012-01-0765
This paper presents a validation method for indoor testing of a passenger car suspension. A study was done to design a supporting modular structure with comparable inertances with respect to a vehicle's actual suspension and body connection points. For the indoor test, the rear axle is positioned on a rotating drum. The suspension system is excited as the wheel passes over cleats fixed on the drum and transient wheel motions are recorded. The indoor test rig outputs (i.e., wheel and chassis accelerations) were compared with experimental data measured on an actual vehicle running at different speeds on the same set of cleats along a flat road. The comparison results validate the indoor testing method. The forces and moments acting at each suspension and chassis connection point were measured with a set of patented six-axis load cells. The forces, moments, wheel and subframe accelerations were measured up to 120 Hz.
Journal Article

Theoretical/Experimental Study on the Vibrations of a Car Engine

2008-04-14
2008-01-1211
The influence of the inertia properties (mass, centre of gravity location, and inertia tensor) on the dynamic behaviour of the engine-gearbox system of a car is studied in this paper, devoting particular attention to drivability and comfort. The vibration amplitudes and the natural frequencies of the engine-gearbox system have been considered. Additionally, the loads transmitted to the car body have been taken into account. Both the experimental and the theoretical simulations confirmed that the engine-gearbox vibrations in the range 10 - 15 Hz are particularly sensitive to slight variation of the inertia properties. The effects on engine-gearbox vibrations due to half-axles, exhaust system, pipes and inner engine-gearbox fluids have been highlighted.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
X