Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

A Controllable Engine Cooling Pump Based on a Magnetorheological Fluid Clutch

2017-09-04
2017-24-0160
The activity described in this paper has been carried out in the framework of a funded project aimed at evaluating the feasibility of a controllable water pump based on an integrated magnetorheological fluid clutch. The advantages consist of an improvement of the overall vehicle performance and efficiency, in the possibility of disengaging the water pump when its action is not required, and in the control of the cooling fluid temperature. So, the design constraints have been defined with reference to the available space, required torque, and electrical power. After an iterative procedure, in which both mechanical design and magnetic field analyses have been considered, the most promising solution has been defined and a first physical prototype has been realized and tested. A preliminary experimental characterization of the developed prototype has been presented.
Technical Paper

Yaw Moment Control of the Vehicle by Means of a Magnetorheological Semi-Active Differential

2015-09-06
2015-24-2529
A new controllable limited slip differential is proposed and tested in software environment. It is characterized by the employment of a magnetorheological fluid, which presents the property of changing its rheology thanks to an applied magnetic field. A vehicle model has been designed and employed for the synthesis of a sliding controller. The control is based on a double level scheme: the upper controller aims to generate the target locking torque, while the lower controller generates, as control action, the supply current for the controllable limited slip differential. The obtained results show the effectiveness of the device in terms of vehicle dynamics improvement. Indeed, the results reached by the vehicle in presence of the new differential confirm the improved performances for both steady and unsteady state manoeuvres.
X