Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
Journal Article

Modeling, Analysis, and Control Design for an Intermittent Megawatt Generator

2008-11-11
2008-01-2858
An Intermittent Megawatt Generator (IMG) has been designed by Innovative Power Solutions (IPS) to meet the needs of future directed energy loads on high-performance aircraft. These loads significantly impact the electrical, mechanical, and thermal performance of the generator, load, and aircraft. If representative simulation models of the generator and other important subsystems can be obtained, the impact on system performance can be analyzed and optimized before the generator is deployed. The objective of this work was to utilize various modeling techniques to obtain accurate electrical, thermal, and mechanical performance models of the IMG, and to apply these models to analyze dynamic response transients to sudden load changes as seen for directed energy loads. Additionally, the models have been used to optimize the IMG control to mitigate voltage transients during these load changes.
Technical Paper

Improvements in the Distributed Heterogeneous Simulation of Aircraft Electric Power Systems

2006-11-07
2006-01-3044
Two recent enhancements to Distributed Heterogeneous Simulation (DHS) are variable communication rates and higher-order predictors. Variable communication automatically controls the communication interval between any two subsystems in an attempt to achieve a desired accuracy during transient periods and maximize speed during steady-state periods. Higher-order predictors can better estimate the values of exchanged variables between data exchange instances, which can improve accuracy and possibly require fewer exchanges. A comparison between a single-computer simulation of an aircraft electric power system and an equivalent three-computer DHS show that the variable communication technique enables more accuracy and higher speed distributed simulations than fixed-step communication. In addition, higher-order predictors are shown to increase accuracy in some cases.
Technical Paper

Analysis and Simulation of a UAV Power System

2002-10-29
2002-01-3175
Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
X