Refine Your Search

Topic

Affiliation

Search Results

Author:
Technical Paper

A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank

2017-10-08
2017-01-2407
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
Technical Paper

A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol

2019-01-15
2019-01-0020
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa.
Technical Paper

Adsorption-based Structural Characterisation of Combustion Chamber Deposits

2009-04-20
2009-01-0502
It has been recognized that carbonaceous engine deposits, which accumulate on the internal surfaces of spark-ignition engines, can adversely affect engine performance. One mechanism by which this occurs is the adsorption and desorption of fuel components and combustion products during the engine cycle. We have studied the structural properties of these deposits and their adsorption behaviour, under different conditions, to try to understand their impact on the engine operation. Combining experimental and simulation techniques, it is possible to evaluate the internal structure of activated carbon adsorbents and determine their pore size distribution (PSD). We have applied this methodology to the study of combustion chamber deposits (CCDs). This will give a better understanding of the phenomena of adsorption and desorption on a molecular level.
Technical Paper

Adsorption-based Structural Characterization of Intake Valve Deposits

2011-04-12
2011-01-0901
There is widespread evidence in the literature that carbonaceous deposits can accumulate on the rear of intake valves and can adversely affect engine performance. For port fuel injected engines, a number of authors have suggested that the porous nature of these intake valve deposits (IVDs) means that they can act like a “sponge”, thereby preventing the correct amount of fuel from entering the combustion chamber during transient operation, especially when the engine is cold. A combination of experimental gas adsorption measurements and computational molecular simulations were used to characterize the porous structure of a sample of IVD. Molecular simulation was then used to predict the equilibrium adsorption of various hydrocarbons, including isooctane, in IVDs. The results support the theory that adsorption of fuel components in IVDs could perturb the mixture preparation.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Assessing the Importance of Injector Cleanliness in Minimising Particulate Emissions in Gasoline Direct Injection Engines

2022-03-29
2022-01-0490
Injector fouling is an important contributory factor to particulate matter (PM) emissions in Gasoline Direct Injection (GDI) engines. Several publications have emerged in recent years which acknowledge the benefits of injector cleanliness, but others claim that high levels of Deposit Control Additive (DCA) could have detrimental effects that outweigh the benefits of the augmented cleaning potential. The paper is divided into two parts: The first part contains a critical review of the literature linking injector cleanliness and particulate matter emissions, and studies assessing the impact of higher treat rates of additives. The second part of the paper describes new evidence of the beneficial effects of DCAs, in the form of several separate (previously unpublished) studies, using both engines and vehicles. In this newly reported work, various DCA treat rates were employed, and some of the fuels had measured UWG levels well in excess of 50 mg/100 mL.
Journal Article

Computer Simulation Studies of Adsorption of Binary and Ternary Mixtures of Gasoline Components in Engine Deposits

2014-10-13
2014-01-2719
Carbonaceous deposits can accumulate on various surfaces of the internal combustion engine and affect its performance. The porous nature of these deposits means that they act like a “sponge”, adsorbing fuel components and changing both the composition and the amount of fuel in the combustion chamber. Here we use a previously developed and validated model of engine deposits to predict adsorption of normal heptane, isooctane, toluene and their mixtures in deposits of different origin within a port fuel injected spark ignition engine (Combustion Chamber Deposits, or CCDs, and Intake Valve Deposits, or IVDs) and under different conditions. We explore the influence of molecular structure of adsorbing species, composition of the bulk mixture and temperature on the uptake and selectivity behaviour of the deposits. While deposits generally show high capacity toward all three components, we observe that selectivity behaviour is a more subtle and complex property.
Technical Paper

Designing Fuels Compatible with Reformers and Internal Combustion Engines

2004-06-08
2004-01-1926
Because reformer technology can be used in conjunction with advanced internal combustion engine technology, it is important to be able to formulate fuels that are compatible with both reformers and ICEs It has been found that most hydrocarbon species typically present in gasoline can be reformed with relative ease. The exception is that olefinic species of carbon number 6 and above are relatively much harder to reform. It is shown how a reformer compatible gasoline fuel with high octane can be blended. For Diesel fuels, synthetic ‘Gas to Liquid’ fuels are generally less susceptible to coking and hence superior to petroleum-derived fuels, for use with an onboard reformer.
Journal Article

Determination of Diesel Physical Properties at Injection Pressures and Temperatures via All-Atom Molecular Simulations

2016-10-17
2016-01-2253
Fuels are subjected to extreme conditions inside a fuel injector. In modern common rail diesel engines, fuel temperatures can reach 150°C and pressures can exceed 2500 bar inside the rail. Under such conditions the fluid physical properties of the fuel can differ substantially from ambient pressure and temperature and can impact the spray behavior and characteristics. Moreover, experimental determination of the fuel physical properties at these extreme conditions can be very difficult. Previously it has been shown that for pure components, all atom molecular simulations offer a reliable means to calculate the key physical properties (including transport properties, e.g., viscosity) at FIE representative conditions. In this study we extend the approach to calculate these properties of binary mixtures using atomistic molecular simulations.
Technical Paper

Development and Validation of a Gasoline Surrogate Fuel Kinetic Mechanism

2009-04-20
2009-01-0934
This article presents a detailed kinetic mechanism for the combustion of surrogate gasoline fuels (mixtures of primary reference fuels and toluene) that has been developed by modification of a previous mechanism (Andrae et al., 2007). The modifications introduced were: (i) revision of the sub-mechanisms associated with H2, CO and CH4 oxidation and (ii) retuning of rate coefficients of reactions involved in the i-octane oxidation sub-mechanism. The first set of modifications made use of new kinetic parameters evaluated by the CODATA project (Baulch et al. 2006), whereas the second was prompted by a sensitivity analysis of the mechanism obtained after implementation of (i). The resulting mechanism, which describes the low, intermediate and high temperature combustion regimes, is used to study pre-ignition of surrogate gasoline fuels. Comparison of the simulation data with experimental measurements over a wide range of conditions reveals a good agreement.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Effect of Fuel Properties on Spray Development from a Multi-Hole DISI Engine Injector

2007-10-29
2007-01-4032
Extensive literature exists on spray development, mixing and combustion regarding engine modeling and diagnostics using single-component and model fuels. However, often the variation in data between different fuels, particularly relating to spray development and its effect on combustion, is neglected or overlooked. By injecting into a quiescent chamber, this work quantifies the differences in spray development from a multi-hole direct-injection spark-ignition engine injector for two single-component fuels (iso-octane and n-pentane), a non-fluorescing multi-component model fuel which may be used for in-cylinder Laser Induced Fluorescence experiments, and several grades of pump gasoline (with and without additives). High-speed recordings of the sprays were made for a range of fuel temperatures and gas pressures. It is shown that a fuel temperature above that of the lowest boiling point fraction of the tested fuel at the given gas pressure causes a convergence of the spray plumes.
Technical Paper

Effect of Sulphur and Silicon in Fuels on an Automotive Reforming Catalyst

2005-05-11
2005-01-2163
The effect of sulphur on a rhodium reformer catalyst was determined in the partial oxidation of n-heptane. The yield loss of the catalyst upon sulphur addition appeared to almost instantaneous and not progressive in time (i.e. it reaches a plateau). Up to ppm levels, the direct yield loss appeared to be linearly related to the sulphur level in the fuel and is of the order of around 3% per ppm of sulphur in the fuel. Sulphur adsorption on rhodium catalyst sites was found to be reversible. The original activity of the catalyst was quickly restored when changing to a sulphur free fuel. The effect of sulphur on the rhodium catalyst does not depend on the structure of the sulphur species. Based on this work, a 10 ppm sulphur maximum seems to be a sufficiently tight specification with respect to the stability of an appropriate reformer catalyst. By contrast, the presence of other species in fuels can cause irreversible and progressive catalyst deterioration.
Technical Paper

Engine Cleanliness in an Industry Standard Mercedes-Benz M111 Bench Engine: Effects of Inlet Valve Deposits on Combustion

2017-10-08
2017-01-2239
Port fuel injected (PFI) technology remains the most common fuel delivery type present in the marketplace for gasoline spark ignition engines and a legacy vehicle fleet featuring PFI technology will remain in the market for decades to come. This is especially the case in parts of Asia where PFI technology is still prominent, although direct injection (DI) technology adoption is starting to catch up. PFI engines can, when operated with lower quality fuels and lubricants, build up performance impairing deposits on a range of critical engine parts including in the fuel injectors, combustion chamber and on inlet valves. Inlet valve deposits (IVDs) in more severe cases have been associated with drivability issues such as engine stumble and engine hesitation on sudden acceleration. Deposit control additives in gasoline formulations are a well-established route to managing and even reversing fuel system fouling.
Technical Paper

Explicit Equations to Estimate the Flammability of Blends of Diesel Fuel, Gasoline and Ethanol

2020-09-15
2020-01-2129
Blends of gasoline, diesel fuel and ethanol (“dieseline”) have shown promise in engine studies examining low temperature combustion using compression ignition. They offer the possibility of high efficiency combined with low emissions of oxides of nitrogen and soot. However, unlike gasoline or diesel fuel alone, such mixtures can be flammable in the headspace above the liquid in a vehicle fuel tank at common ambient temperatures. Quantifying their flammability characteristics is important if these fuels are to see commercial service. The parameter of most interest is the Upper Flammable Limit (UFL) temperature, below which the headspace vapour is flammable. In earlier work a mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was developed and validated experimentally. It was then used to study the flammability of a wide variety of dieseline blends parametrically.
Technical Paper

Exploring a Gasoline Compression Ignition (GCI) Engine Concept

2013-04-08
2013-01-0911
Future vehicles will increasingly be required to improve their efficiency, reduce both regulated and CO₂ emissions, and maintain acceptable levels of driving, safety, and noise performance. To achieve this high level of performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. These capabilities offer the potential to design future vehicles to operate on the most widely available and GHG-reducing fuels. In previous studies, fuel flexibility has been demonstrated on a compression ignition bench engine and vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can operate routinely on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels.
Technical Paper

Hydrogen Rich Gas Production in a Diesel Partial Oxidation Reactor with HC Speciation

2009-04-20
2009-01-0276
In the present work, the partial oxidation of diesel (US07), rapeseed methyl ester (RME) and low temperature Fischer - Tropsch synthetic diesel (SD), almost 100% paraffinic, was investigated for the purpose of hydrogen and intermediate hydrocarbon species production over a prototype reforming catalyst, for the potential use in hydrocarbon selective catalytic reduction (HC-SCR) of nitrogen oxide (NOx) emissions from diesel engines. The presence of small amounts of hydrogen can substantially improve the effectiveness of hydrocarbons in the selective reduction of NOx over lean NOx catalysts, particularly at low temperatures (150-350°C). In this study, the partial oxidation reactor was operating at the same input power (kW), based on the calorific values of the fed fuel. Hydrogen production was as high as 19%, from the partial oxidation of SD fuel, and dropped to 17% and 14% for RME and US07 diesel, respectively.
Technical Paper

Impact of Deposit Control Additives on Particulate Emissions and Fuel Consumption in Pre-used Vehicles with Gasoline Direct Injection Engines

2024-04-09
2024-01-2127
Injector nozzle deposits can have a profound effect on particulate emissions from vehicles fitted with Gasoline Direct Injection (GDI) engines. Several recent publications acknowledge the benefits of using Deposit Control Additives (DCA) to maintain or restore injector cleanliness and in turn minimise particulates, but others claim that high levels of DCA could have detrimental effects due to the direct contribution of DCA to particulates, that outweigh the benefits of injector cleanliness. Much of the aforementioned work was conducted in laboratory scenarios with model fuels. In this investigation a fleet of 7 used GDI vehicles were taken from the field to determine the net impact of DCAs on particulates in real-world scenarios. The vehicles tested comprised a range of vehicles from different manufacturers that were certified to Euro 5 and Euro 6 emissions standards.
X