Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Development of Three Way Catalyst Aging Model: Application to Real Driving Emission Condition

2019-09-09
2019-24-0047
Further reduction of vehicles pollutant and CO2 emissions is required to prevent global warming and to improve air quality. The exhaust system is designed to ensure low emission during all life of the vehicle. As catalyst aging is affecting the catalyst performance, such impact needs to be consider upfront during the design of the fresh catalyst. Until now, the exhaust system design are evaluated based on real tests for each vehicle, using exhaust lines aged on engine test benches or burner benches. This induces major investigation limitations such as: late evaluation in development cycle, high testing and prototyping cost. The usage of Model Based Development approach can be a powerful way to improve this process by allowing system evaluation under several aging conditions at early development stage. The present study focuses on modelling of the Three Way Catalyst (TWC) aging to predict the mileage impact on tailpipe emissions.
Journal Article

Evaluation of Fuel Economy Potential of an Active Grille Shutter by the Means of Model Based Development Including Vehicle Heat Management

2015-09-06
2015-24-2536
In the automotive field, reducing harmful pollutant, CO2 emissions and fuel consumption of vehicles while increasing customer comfort is a continuous challenge that requires more and more sophisticated technology implementations. However, it is often difficult to anticipate the advantages and drawbacks of a technology without having its prototype parts and/or knowing the optimal control strategy. In order to meet these challenges, the authors have developed a vehicle thermal model in AMESim platform to evaluate the benefits of an Active Grille Shutter (AGS) on fuel economy when applied. The vehicle model was based on a C-Segment vehicle powered by a 1.4L Diesel engine. The complete oil and coolant circuits were modeled as well as a friction model based on engine coolant and oil temperature.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

Powertrain Simulation Tools and Application to the Development of a SI Engine Concept Car

2008-04-14
2008-01-0356
The powertrain simulation tools are nowadays an efficient support to optimize cost and duration of the whole engine technological developments. They can deliver optimized simulator versions for various targets such as system understanding, design investigation, non-measurable value access or virtual bench use for control and calibration. Under the condition of an accurate modelling and simulation know-how to take into account the simulator using constraints, the simulation can become an undisputable support for powertrain design as the test bed already is. The goal of this paper is to present the large range of the powertrain simulation capabilities for the specific application of a downsized turbocharged GDI engine with twin VVT embedded in a concept car. The modelling framework is first presented and different items are laid-out. A first part is dedicated to the engine air path and in particular to the modelling of gas exchange phenomena such as back-flow.
Technical Paper

Modelling of a Turbocharged SI Engine with Variable Camshaft Timing for Engine Control Purposes

2006-10-16
2006-01-3264
In the whole engine development process, 0D/1D simulation has become a powerful tool, from conception to final calibration. Within the context of control strategy design, a turbocharged spark ignition (SI) engine with variable camshaft timing has been modelled on the AMESim platform. This paper presents the different models and the methodology used to design, calibrate and validate the simulator. The validated engine model is then used for engine control purposes related to downsizing concept. Indeed, the presented control strategy acts on the in-cylinder trapped mass, the in-cylinder burnt gas fraction and the air scavenging from the intake to the exhaust. Consequently, it permits to reduce not only the fuel consumption and pollutant emissions but also to improve the transient response of the turbocharger
Technical Paper

Development of Highly Premixed Combustion Diesel Model: From Simulation to Control Design

2006-04-03
2006-01-1072
In the context of increasingly stringent pollution norms, reduced engine emissions are a great challenge for compressed ignition engines. After-treatment solutions are expensive and very complex to implement, while the NOx/PM trade-off is difficult to optimise for conventional Diesel engines. Therefore, in-cylinder pollutant production limitation by the HPC combustion mode (Highly Premixed Combustion) - including Homogeneous Charge Compression Ignition (HCCI) - represents one of the most promising ways for new generation of CI engine. For this combustion technology, control based on torque estimation is crucial: the objectives are to accurately control the cylinder-individual fuel injected mass and to adapt the fuel injection parameters to the in-cylinder conditions (fresh air and burned gas masses and temperature).
Technical Paper

Application of a New 1D Combustion Model to Gasoline Transient Engine Operation

2005-05-11
2005-01-2107
The reduction of pollutant emissions and fuel consumption of a car, while maintaining its driveability, is one of the major goals of car manufacturers. The engine control seems to be a promising solution for this issue. Indeed, it is based on the optimisation of the engine operating conditions. Its development is made under engine transient operations, using experimental test-beds or numerical simulations. This last method requires however complex and sophisticated 1D system simulation software, due to the dynamic interactions between all the engine sub-systems. This paper presents the interest of using a 1D physical combustion model for gasoline transient engine applications instead of traditional empirical models. The proposed model, called CFM-1D, is based on the 3D gasoline combustion model ECFM [1]. In this model, the combustion chamber is divided into two zones: the burned and unburned gases.
Technical Paper

A New Coupling Approach Using a 1D System Simulation Software and a 3D Combustion Code Applied to Transient Engine Operation

2004-10-25
2004-01-3002
Today's engine development concentrates mostly on steady state conditions to benchmark performance. In fact, the engine behaviour under transient operation is increasingly of interest due to the dynamic interactions between the engine sub-systems. Transient testing is however highly demanding and requires complex and sophisticated facilities. This paper highlights an efficient way to investigate the transient engine behaviour using an original numerical approach based on the coupling between IFP-ENGINE, a 1D engine simulation tool, and IFP-C3D, a 3D combustion code. IFP-C3D is employed to extend or replace the experimental combustion maps used in IFP-ENGINE in the form of Wiebe's law. Basically, the process consists in first making the 3D in-cylinder combustion computations corresponding to all relevant engine operating conditions and then processing the combustion results via IFP-Combustion-Fitting, a specific tool that feeds IFP-ENGINE model with optimised Wiebe's law coefficients.
Technical Paper

Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion

2004-06-08
2004-01-1996
A lumping model has been formulated to calculate the thermodynamic properties required for internal combustion engine multidimensional computations, including saturation pressure, latent heat of vaporization, liquid density, surface tension, viscosity, etc. This model consists firstly in reducing the analytical data to a single (i.e. pure) pseudo-component characterized by its molecular weight, critical pressure and temperature, and acentric factor. For a gasoline fuel, the required analytical data are those provided by gas chromatography. For a Diesel fuel, the required data are a true boiling point (TBP) distillation curve and the fuel density at a single temperature. This model provides a valuable tool for studying the effects of fuel physical properties upon the behavior of a vaporizing spray in a chamber, as well as upon direct injection gasoline and Diesel engines using the multidimensional (3D) KMB code.
Technical Paper

New Knock Localization Methodology for SI Engines

2003-03-03
2003-01-1118
A methodology has been developed to determine, for every cycle on which significant knock is detected, the area in which self-ignition occurs. This methodology is based on the exploitation by a dedicated algorithm of a minimum of 4 simultaneous combustion chamber pressure measurements. The algorithm has been first tested on the results of engine knocking simulation, then applied with success on a single-cylinder engine equipped with classical pressure transducers and with an instrumented cylinder head gasket developed for this application. The results obtained with these two kinds of transducers on several engine configurations and tunings are similar. If the timing and intensity of knock events depend on all engine parameters, its location is especially sensitive to such design parameters as fluid motion into the combustion chamber and spark plug position.
Technical Paper

Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code

2002-10-21
2002-01-2701
Currently, the development of higher specific output and higher efficiency S.I. engines requires better control and knowledge of knock mechanisms. As it is not easily possible to instrument an engine to determine the beginning of fuel auto-ignition, knock modeling by means of 3D CFD simulation, can be a powerful tool to understand and try to avoid this phenomenon [1, 2, 3]. The objectives of the work described in this paper are to develop and validate a simple model of auto-ignition. This model, developed at IFP, is implemented in the 3D CFD code KMB [4, 5]. It is based on an AnB model [6, 7] which creates a ‘precursor’ species transported with the flow in the combustion chamber. When its concentration reaches a limiting value, the auto-ignition phenomenon occurs.
X