Viewing 1 to 3 of 3
Technical Paper
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Abstract The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper
Alexandros Hatzipanagiotou, Paul Wenzel, Christian Krueger, Raul Payri, Jose M. Garcia-Oliver, Walter Vera-Tudela, Thomas Koch
Abstract In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Journal Article
Galin Nakov, Fabian Mauss, Paul Wenzel, Rüdiger Steiner, Christian Krüger, Yongzhe Zhang, Rajesh Rawat, Anders Borg, Cathleen Perlman, Karin Fröjd, Harry Lehtiniemi
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Viewing 1 to 3 of 3