Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Technical Paper

S2V2X – A New V2X Framework to Support and Enable the Design of Automated Vehicles with a Sufficient Level of Safety

2023-12-29
2023-01-1905
Vehicle-to-Everything (V2X) communications has the potential to increase the safety and autonomy of automated vehicles in addition to improving reliability, efficiency, infotainment, traffic, road safety, energy consumption, and costs. V2X is enabled by 5G technologies which promise faster connections, lower latency, higher reliability, more capacity and wider coverage. However, research is lacking in determining exactly how V2X can improve the safety, security, and autonomy of automated vehicles and more specifically what are the main V2X requirements. This paper provides a novel framework and structure to introduce V2X as a perception sensor sub-system into ADAS and ADS and to allocate top level target safety requirements to this new modality. To illustrate the novel structure, an example is provided using AD use cases in the context of the five SAE driving automation levels Level 1 through Level 5.
Book

The Safety of Controllers, Sensors, and Actuators: Book 5 - Automated Vehicle Safety

2019-03-07
Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. The Safety of Controllers, Sensors, and Actuators addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers.
Book

The Role of ISO 26262: Book 4 - Automated Vehicle Safety

2019-03-07
Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. The Role of ISO 26262 addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers.
Book

Safety of the Intended Functionality: Book 3 - Automated Vehicle Safety

2019-03-07
Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. Safety of the Intended Functionality (SOTIF) addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers. Topics that these papers feature include the system engineering management approach and redundancy technical approach to safety.
Book

Multi-Agent Safety: Book 2 - Automated Vehicle Safety

2019-03-07
Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. Multi-Agent Safety addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers. Topics that these papers feature include vehicle interaction with other vehicles, pedestrians, bicyclists, and other road objects.
Book

Characterizing the Safety of Automated Vehicles: Book 1 - Automated Vehicle Safety

2019-03-07
Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. Characterizing the Safety of Automated Vehicles addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers. Topics that these papers feature include functional safety, SOTIF, and multi-agent safety.
Journal Article

Task and Message Scheduling for a FlexCAN-based Hybrid-Electric Vehicle Drivetrain Functional Unit

2008-04-14
2008-01-0480
A Task and Message Schedule for a FlexCAN-based Hybrid-Electric vehicle (HEV) functional unit is described. The resulting schedule is a component of an incremental message and task scheduling approach based on a time-driven message schedule and priority-driven task schedule. The HEV functional unit involves the combined control and monitoring functions of an internal combustion engine working in parallel with a permanent magnet synchronous motor. The control algorithm for the synchronous motor has been simulated using VHDL-AMS. The global message system is supported by FlexCAN and the task scheduler system is supported by a priority based OS (e.g., OSEK or AUTOSAR).
Book

Safety-Critical Automotive Systems

2006-08-01
Safety-Critical Automotive Systems contains 40 SAE technical papers covering six years (2001-2006) of research on this developing subject. Focus is on the vehicle's most important subsystems: sensors, actuators, electronic control units (ECUs), communication systems, and software (application, middleware, drivers, etc.).
Technical Paper

Verification and Validation of a Safety-Critical Steer-By-Wire System Using DO-178B

2006-04-03
2006-01-1447
The application of DO-178B for the verification and validation of the safety-critical aspects of a steer-by-wire sub-system of a vehicle by using a spiral development model is discussed. The project was performed within a capstone design course at Kettering University. Issues including lessons learned regarding requirements, specifications, testing, verification, and validation activities as required by DO-178B are summarized.
Technical Paper

Design of a Safety-Critical Drive-By-Wire System using FlexCAN

2006-04-03
2006-01-1026
This paper describes the design of a drive-by-wire system for a commercial lift truck using the FlexCAN communication architecture. FlexCAN is a recently developed architecture based on the CAN protocol to support deterministic and safety-critical applications. The main features of FlexCAN are its simplicity and ready implementation based on COTS CAN components. The main steer-by-wire design tasks are listed and a description of how each of the tasks was accomplished using the FlexCAN architecture is detailed. A performance evaluation of the design is included.
Technical Paper

An Architecture for a Safety-Critical Steer-by-Wire System

2004-03-08
2004-01-0714
A hardware and software architecture suitable for a safety-critical steer-by-wire systems is presented. The architecture supports three major failure modes and features several safety protocols and mechanisms. Failures due to component failures, software errors, and human errors are handled by the architecture and safety protocols. A test implementation using replicated communication channels, controllers, sensors, and actuators has been performed. The test implementation uses the CAN protocol, Motorola S12 microcontrollers, and Microchip MCP250XX components with a steering wheel and road wheel simulator. The focus of the paper is on the application level, using system engineering principles which incorporate a holistic approach to achieve safety at various levels.
Technical Paper

Modeling the Response of an Automotive Event-Based Architecture: A Case Study

2003-03-03
2003-01-1199
While many current vehicle network systems for body bus applications use event triggered analysis processes, the deterministic point of view raises concerns about system timing due to message latency. This paper studies the latency performance characteristics of a typical body bus vehicle network using event triggered analysis over the CAN bus.
X