Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Crash Test Facility Upgrade for NHTSA Oblique Test with Residual Energy Control and Advanced Barrier Force Measurement

2018-04-03
2018-01-1056
The objective of this study was to design and implement laboratory countermeasures for kinetic energy management in the NHTSA 90 kph oblique front impact crash test. In addition, an advanced force distribution analysis method was developed by upgrading the oblique moving deformable barrier (OMDB). The residual kinetic energy of the oblique test can be challenging to safely control, especially for smaller crash labs. The residual energies can be greater than other front crash modes by more than 50% of the initial energy. Wheel brakes on the OMDB and target vehicle may not be enough to contain the crash. Two tether systems were designed: one between the OMDB and towing cable and the other between the test vehicle and ground. Both tether systems use a hydraulic brake caliper and rotor to provide controlled payout and energy absorption. Current OMDB has basic sensing capability to measure kinematics but it has a limited ability to study dynamic force distributions.
Technical Paper

Truck and Sport Utility Vehicle Front End Stiffness Corridors

2018-04-03
2018-01-0518
The purpose of this study was to characterize front stiffness response of contemporary sport utility vehicles (SUVs) and trucks. Vehicle front impact test data were obtained from data published by the National Highway Traffic Safety Administration [NHTSA]. For all tests, force data were obtained from barrier load cells and stroke data were derived from accelerometers. Data from 53 truck and SUV tests were aggregated by vehicle product segment according to body style to obtain mean ± standard deviation (SD) stiffness corridors: (1) compact unibody SUV/crossover, (2) small unibody SUV/crossover, (3) mid-size unibody SUV/crossover, (4) frame SUV, and (5) frame truck. To compare between vehicle product segments, this study also considered the average stiffness (slope) within the stroke region required to achieve 300 kN total barrier force. Across unibody SUV segments, average stiffness varied from 1.4–1.8 kN/mm.
Technical Paper

Introduction of Two New Pediatric Finite Element Models for Pedestrian and Occupant Protections

2016-04-05
2016-01-1492
To help predict the injury responses of child pedestrians and occupants in traffic incidents, finite element (FE) modeling has become a common research tool. Until now, there was no whole-body FE model for 10-year-old (10 YO) children. This paper introduces the development of two 10 YO whole-body pediatric FE models (named CHARM-10) with a standing posture to represent a pedestrian and a seated posture to represent an occupant with sufficient anatomic details. The geometric data was obtained from medical images and the key dimensions were compared to literature data. Component-level sub-models were built and validated against experimental results of post mortem human subjects (PMHS). Most of these studies have been mostly published previously and briefly summarized in this paper. For the current study, focus was put on the late stage model development.
Technical Paper

Comparison of Front Passenger Hybrid III 5th Percentile Female Nij Response in 35mph Flat Rigid Barrier Test with Linear & Pitching Sled

2016-04-05
2016-01-1527
The introduction of a revised New Car Assessment Program (NCAP) frontal crash test in the US has been challenging due to more stringent Anthropomorphic Test Device (ATD) rating metrics such as neck injury (Nij). These ATD responses in full vehicle tests may be under-predicted with conventional linear sleds because they are not capable of reproducing the pitching effect seen in some vehicle tests. The primary objective of this study was to confirm the effects of pitching sled on front passenger 5th %ile female ATD Nij response by comparing prototype vehicle test to pitching sled and linear sled tests. A second objective was to confirm that newly introduced pitching sled with enhanced pitching capability was able to reproduce similar vehicle kinematics when compared to a baseline vehicle test.
X